Suppr超能文献

负载 Fe-Cu 层状双氢氧化物的生物炭可见光驱动过硫酸盐活化降解青霉素 G:性能、机制及应用潜力。

Visible-light-driven peroxydisulfate activation by biochar-loaded Fe-Cu layered double hydroxide for penicillin G degradation: Performance, mechanism and application potential.

机构信息

School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China.

School of Water Resources & Environmental Engineering, East China University of Technology, Nanchang, 330013, China; Jiangxi Provincial Key Laboratory of Genesis and Remediation of Groundwater Pollution, Nanchang, 330013, China.

出版信息

Environ Res. 2024 Dec 15;263(Pt 1):120043. doi: 10.1016/j.envres.2024.120043. Epub 2024 Sep 20.

Abstract

The biochar-loaded Fe-Cu layered double hydroxide (FeCu-LDH@BC) catalyst was synthesized via a simple hydrothermal method and used to activate peroxydisulfate (PDS) for penicillin G (PG) degradation under visible light. The physicochemical properties of FeCu-LDH@BC were characterized using SEM, XPS, UV-DRS, SEM-EDS, HRTEM, XRD, BET, PL spectrum, FT-IR, Raman spectrum, TG-DSC, TPD, and EIS, showing that biochar (BC) enhanced the optical properties of FeCu-LDH. Notably, the FeCu-LDH@BC + PDS + Light system achieved a 98.79% degradation efficiency for PG in just 10 min. Furthermore, FeCu-LDH@BC retained excellent activity after four reuse cycles. LSV results indicated enhanced electron transfer in the FeCu-LDH@BC + PDS + Light system, suggesting a synergistic effect between the photocatalytic and PDS activation systems. The interconversion of h, SO·⁻, O, and ·OH species was found to play a key role in PG degradation. Density functional theory was used to identify PG sites susceptible to radical attack, and the possible degradation pathway was proposed based on liquid chromatography-mass spectrometry results. Toxicity evaluation using the TEST software confirmed that the intermediates formed were significantly less toxic than PG. Lastly, the FeCu-LDH@BC + PDS + Light system removed 37.45% of total organic carbon and 63.74% of chemical oxygen demand from real wastewater within 120 min. The type and transformation pathways of organic matter in the wastewater were analyzed using 3D Excitation Emission Matrix spectroscopy to assess the system's application potential.

摘要

负载生物炭的 Fe-Cu 层状双氢氧化物(FeCu-LDH@BC)催化剂通过简单的水热法合成,并用于可见光下激活过一硫酸盐(PDS)降解青霉素 G(PG)。采用 SEM、XPS、UV-DRS、SEM-EDS、HRTEM、XRD、BET、PL 光谱、FT-IR、拉曼光谱、TG-DSC、TPD 和 EIS 对 FeCu-LDH@BC 的物理化学性质进行了表征,结果表明生物炭(BC)增强了 FeCu-LDH 的光学性质。值得注意的是,FeCu-LDH@BC+PDS+Light 体系在 10 min 内即可实现 PG 的 98.79%降解效率。此外,FeCu-LDH@BC 在经过四个重复使用循环后仍保持优异的活性。LSV 结果表明,FeCu-LDH@BC+PDS+Light 体系中电子转移得到增强,表明光催化和 PDS 激活体系之间存在协同效应。发现 h、SO·⁻、O 和·OH 物种的相互转化在 PG 降解中起着关键作用。基于液相色谱-质谱结果,提出了可能的降解途径。使用 TEST 软件进行的毒性评估证实,形成的中间体比 PG 的毒性明显降低。最后,FeCu-LDH@BC+PDS+Light 体系在 120 min 内从实际废水中去除了 37.45%的总有机碳和 63.74%的化学需氧量。通过三维激发发射矩阵光谱分析废水的有机物类型和转化途径,评估系统的应用潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验