Kaur Arshdeep, Aran Khadga Raj
Research Scholar, Department of Pharmacy Practice, ISF College of Pharmacy, Moga, Punjab, India.
Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga 142001, Punjab, India.
Brain Res. 2025 Mar 15;1851:149472. doi: 10.1016/j.brainres.2025.149472. Epub 2025 Jan 27.
Neurodegenerative disorders are characterized by a progressive loss of neurons, causing substantial deficits in motor and cognitive functioning. Bilirubin is a yellow by-product of heme, existing in two primary isoforms namely unconjugated and conjugated, while initially produced unconjugated isomer is lipophilic and cytotoxic in nature. At physiological levels, bilirubin has an important role in brain function by acting as a powerful antioxidant, preventing brain tissues from oxidative damage by eliminating reactive oxygen species (ROS). Additionally, it contributes to immune regulation through microglial activation, cytokine release, complement system interception, fragment crystallization (Fc) receptor modulation, and major histocompatibility complex (MHC II) expression modification, which lower the risk of inflammatory and autoimmune reactions in the central nervous system (CNS). As per the literature, serum bilirubin concentrations are associated with CNS diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), ischemic stroke, hemorrhagic stroke, traumatic brain injury (TBI), multiple sclerosis (MS), epilepsy, schizophrenia and kernicterus spectrum disorder (KSD), which causes neuronal damage, especially in regions like the basal ganglia and cerebellum, which causes movement abnormalities and cognitive deficits. The aim of this article is to explore the dual role of bilirubin as neuroprotective and neurotoxic, essential for establishing effective therapeutic outcomes for neurodegenerative diseases by looking at its cellular mechanisms and discussing how bilirubin's antioxidant properties can shield neurons and, in some situations, may induce oxidative stress and apoptosis.
神经退行性疾病的特征是神经元逐渐丧失,导致运动和认知功能出现严重缺陷。胆红素是血红素的黄色副产物,以两种主要异构体形式存在,即未结合型和结合型,最初产生的未结合型异构体本质上是亲脂性和细胞毒性的。在生理水平上,胆红素作为一种强大的抗氧化剂,通过消除活性氧(ROS)防止脑组织受到氧化损伤,从而在脑功能中发挥重要作用。此外,它通过小胶质细胞激活、细胞因子释放、补体系统拦截、片段结晶(Fc)受体调节和主要组织相容性复合体(MHC II)表达修饰来促进免疫调节,降低中枢神经系统(CNS)发生炎症和自身免疫反应的风险。根据文献,血清胆红素浓度与中枢神经系统疾病有关,如阿尔茨海默病(AD)、帕金森病(PD)、缺血性中风、出血性中风、创伤性脑损伤(TBI)、多发性硬化症(MS)、癫痫、精神分裂症和核黄疸谱系障碍(KSD),这些疾病会导致神经元损伤,尤其是在基底神经节和小脑等区域,进而导致运动异常和认知缺陷。本文的目的是探讨胆红素的神经保护和神经毒性双重作用,通过研究其细胞机制并讨论胆红素的抗氧化特性如何保护神经元,以及在某些情况下可能如何诱导氧化应激和细胞凋亡,这对于为神经退行性疾病建立有效的治疗结果至关重要。