Suppr超能文献

胎鼠脑细胞原代培养中的甲状腺激素代谢

Thyroid hormone metabolism in primary cultures of fetal rat brain cells.

作者信息

Leonard J L, Larsen P R

出版信息

Brain Res. 1985 Feb 18;327(1-2):1-13. doi: 10.1016/0006-8993(85)91493-3.

Abstract

The metabolism of thyroxine 3,5,3',5'-tetraiodothyronine, (T4) and 3,5,3'-triiodothyronine (T3) was studied in primary cultures of dispersed fetal rat brain cells. Cultured brain cells actively metabolized both T4 and T3 by enzyme catalyzed deiodination reactions which increase (type II 5'-deiodinase) or decrease (type I 5'-deiodinase and type III 5-deiodinase) the bioactivity of thyroid hormone. Homogenates of cultured brain cells showed both type I and type II 5'-deiodinating activities and these two enzymes tended to differ in their time course of appearance. Cultures exposed to 10 microM cytosine arabinoside for 16 h showed up to a 70% reduction in type I activity without decreasing the type II enzyme suggesting that the type II enzyme is associated with non-dividing neuronal cells. The predominant pathway for T4 and T3 metabolism in situ was tyrosyl-ring or type III 5'-deiodination which followed first order kinetics with a t1/2 of 70 min. T4 to T3 conversion by the type II enzyme was consistently observed after correcting for the degradation of newly formed T3 by the type III enzyme. In situ, both type II and type II enzymes were thiol-dependent and both activities were inhibited by iopanoic acid. Type III 5-deiodination of T4 produced 34 fmol 3,3,5'-triiodothyronine (rT3)/h per 10(6) cells at 10 mM dithiothreitol (DTT) and 97 fmol of rT3/h per 10(6) cells at 50 mM DTT. T3 production by the type II enzyme was 1.2 and 4.4 fmol of T3/h per 10(6) cells at 10 and 50 mM DTT, respectively. Thyroid hormone deficient culture conditions increased type II enzyme activity by 4-5-fold within 48 h and this was prevented in a dose-dependent fashion by supplementing the media with increasing amounts of T3. These data indicate that primary cultures of dispersed brain cells mimic the intact cerebral cortex with respect to the metabolism of thyroid hormone and the regulatory mechanisms which defend cerebrocortical T3 levels. The vigorous metabolism of both T4 and T3 by these cultures may explain some of the difficulties in demonstrating thyroid hormone-dependent biochemical changes at physiologically relevant levels of thyroid hormone.

摘要

在分散的胎鼠脑细胞原代培养物中研究了甲状腺素3,5,3',5'-四碘甲腺原氨酸(T4)和3,5,3'-三碘甲腺原氨酸(T3)的代谢。培养的脑细胞通过酶催化的脱碘反应积极代谢T4和T3,这些反应会增加(II型5'-脱碘酶)或降低(I型5'-脱碘酶和III型5-脱碘酶)甲状腺激素的生物活性。培养的脑细胞匀浆显示出I型和II型5'-脱碘活性,并且这两种酶在其出现的时间进程上往往有所不同。暴露于10 microM阿糖胞苷16小时的培养物显示I型活性降低多达70%,而II型酶活性未降低,这表明II型酶与非分裂的神经元细胞相关。原位T4和T3代谢的主要途径是酪氨酰环或III型5'-脱碘,其遵循一级动力学,半衰期为70分钟。在校正III型酶对新形成的T3的降解后,始终观察到II型酶将T4转化为T3。在原位,II型和III型酶均依赖于硫醇,并且两种活性均受到碘番酸的抑制。在10 mM二硫苏糖醇(DTT)时,T4的III型5-脱碘产生34 fmol 3,3,5'-三碘甲腺原氨酸(反T3)/小时/10^6个细胞,在50 mM DTT时为97 fmol反T3/小时/10^6个细胞。II型酶产生的T3在10和50 mM DTT时分别为1.2和4.4 fmol T3/小时/10^6个细胞。甲状腺激素缺乏的培养条件在48小时内使II型酶活性增加4至5倍,通过向培养基中补充增加量的T3以剂量依赖性方式可防止这种情况。这些数据表明,就甲状腺激素的代谢以及维持脑皮质T3水平的调节机制而言,分散的脑细胞原代培养物模拟了完整的大脑皮质。这些培养物对T4和T3的强烈代谢可能解释了在生理相关甲状腺激素水平下证明甲状腺激素依赖性生化变化的一些困难。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验