Suppr超能文献

了解北卡罗来纳州的阿片类药物综合征:一种建模和识别因素的新方法。

Understanding the opioid syndemic in North Carolina: A novel approach to modeling and identifying factors.

作者信息

Murphy Eva, Kline David, Egan Kathleen L, Lancaster Kathryn E, Miller William C, Waller Lance A, Hepler Staci A

机构信息

Department of Statistical Sciences, College of Arts and Sciences, Wake Forest University, 127 Manchester Hall, Winston-Salem, NC, 27109, United States.

Division of Public Health Sciences, Department of Biostatistics and Data Science, Wake Forest University School of Medicine, 475 Vine Street, Winston-Salem, NC, 27101, United States.

出版信息

Biostatistics. 2024 Dec 31;26(1). doi: 10.1093/biostatistics/kxae052.

Abstract

The opioid epidemic is a significant public health challenge in North Carolina, but limited data restrict our understanding of its complexity. Examining trends and relationships among different outcomes believed to reflect opioid misuse provides an alternative perspective to understand the opioid epidemic. We use a Bayesian dynamic spatial factor model to capture the interrelated dynamics within six different county-level outcomes, such as illicit opioid overdose deaths, emergency department visits related to drug overdose, treatment counts for opioid use disorder, patients receiving prescriptions for buprenorphine, and newly diagnosed cases of acute and chronic hepatitis C virus and human immunodeficiency virus. We design the factor model to yield meaningful interactions among predefined subsets of these outcomes, causing a departure from the conventional lower triangular structure in the loadings matrix and leading to familiar identifiability issues. To address this challenge, we propose a novel approach that involves decomposing the loadings matrix within a Markov chain Monte Carlo algorithm, allowing us to estimate the loadings and factors uniquely. As a result, we gain a better understanding of the spatio-temporal dynamics of the opioid epidemic in North Carolina.

摘要

阿片类药物泛滥是北卡罗来纳州面临的一项重大公共卫生挑战,但数据有限限制了我们对其复杂性的理解。研究不同结果之间的趋势和关系(这些结果被认为反映了阿片类药物滥用情况)为理解阿片类药物泛滥提供了一个不同的视角。我们使用贝叶斯动态空间因素模型来捕捉六个不同县级结果之间的相互关联动态,这些结果包括非法阿片类药物过量死亡、与药物过量相关的急诊就诊、阿片类药物使用障碍的治疗人数、接受丁丙诺啡处方的患者,以及新诊断的急性和慢性丙型肝炎病毒及人类免疫缺陷病毒病例。我们设计该因素模型,以便在这些结果的预定义子集中产生有意义的相互作用,这导致加载矩阵偏离传统的下三角结构,并引发常见的可识别性问题。为应对这一挑战,我们提出了一种新颖的方法,即在马尔可夫链蒙特卡罗算法中分解加载矩阵,从而使我们能够唯一地估计加载值和因素。结果,我们对北卡罗来纳州阿片类药物泛滥的时空动态有了更好的理解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54dd/11823283/e09e93205f97/kxae052f1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验