Suppr超能文献

开发并实施一种具有全国范围影响力的数字物理筛查模型,用于诊断家族性高胆固醇血症。

Development and implementation of a digiphysical screening model with nationwide reach to diagnose familial hypercholesterolemia.

作者信息

Littmann Karin, Kindborg Gustav, Lidin Matthias, Mellbin Linda, Hogling Daniel Eriksson, Brinck Jonas

机构信息

Department of Medicine Huddinge, Karolinska Institutet, Stockholm, Sweden.

Medical Unit of Endocrinology, Karolinska University Hospital, Stockholm, Sweden.

出版信息

Digit Health. 2025 Jan 23;11:20552076241311156. doi: 10.1177/20552076241311156. eCollection 2025 Jan-Dec.

Abstract

BACKGROUND

Familial hypercholesterolemia (FH) is a hereditary dyslipidemia that confers a severely elevated risk for development of early atherosclerotic cardiovascular disease if left untreated. FH is underdiagnosed in most countries including Sweden.

AIM

To develop and evaluate the implementation of a digiphysical screening model to diagnose FH in the clinical routine.

METHODS

A digiphysical screening model for FH, containing digital and physical related activities was developed and fully implemented in routine clinical care in the Stockholm region, Sweden 2022. The centerpiece of the model is a tailormade interactive web-based platform designed to facilitate communication and secure medical information exchange between its participants and the healthcare professionals. The screening model includes, (i) cascade screening of relatives to patients with a confirmed FH diagnosis and (ii) systematic selective screening of patients with established atherosclerotic coronary artery disease.

RESULTS

Until October 2023, 338 index patients were included in the cascade screening. They invited 954 relatives nationwide, 616 (64.6%) accepted participation, 346 (36.3%) were completely screened, and 141 (14.8%) have received a FH diagnosis (40.8% of all completely screened). Selective screening was performed in 2867 patients with coronary artery disease, 355 (12.4%) were identified with increased risk for FH and underwent a genetic test. Of these, 153 (3.8%) had a genetic test result and 52 (1.8%) were diagnosed with FH.

CONCLUSIONS

A digiphysical screening model with a nationwide reach to diagnose FH was successfully implemented in routine clinical care. The model has potential to facilitate FH screening and provide health economic benefits long term.

摘要

背景

家族性高胆固醇血症(FH)是一种遗传性血脂异常,如果不进行治疗,会使早期动脉粥样硬化性心血管疾病的发生风险大幅升高。在包括瑞典在内的大多数国家,FH的诊断率都很低。

目的

开发并评估一种数字化物理筛查模型在临床常规中诊断FH的实施情况。

方法

开发了一种用于FH的数字化物理筛查模型,该模型包含数字和物理相关活动,并于2022年在瑞典斯德哥尔摩地区的常规临床护理中全面实施。该模型的核心是一个量身定制的基于网络的交互式平台,旨在促进参与者与医疗专业人员之间的沟通并确保医疗信息的交换。筛查模型包括:(i)对确诊为FH的患者的亲属进行级联筛查,以及(ii)对已确诊动脉粥样硬化性冠状动脉疾病的患者进行系统的选择性筛查。

结果

截至2023年10月,338名索引患者被纳入级联筛查。他们邀请了全国954名亲属,616名(64.6%)接受了参与邀请,346名(36.3%)完成了全面筛查,141名(14.8%)被诊断为FH(占所有完成全面筛查者的40.8%)。对2867名冠状动脉疾病患者进行了选择性筛查,其中355名(12.4%)被确定为FH风险增加并接受了基因检测。其中,153名(3.8%)获得了基因检测结果,52名(1.8%)被诊断为FH。

结论

一种可在全国范围内诊断FH的数字化物理筛查模型已在常规临床护理中成功实施。该模型有潜力促进FH筛查并长期提供健康经济效益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1758/11758524/a04ec767fbe7/10.1177_20552076241311156-fig1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验