Sobral Patrícia S, Carvalho Tiago, Izadi Shiva, Castilho Alexandra, Silva Zélia, Videira Paula A, Pereira Florbela
LAQV and REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Caparica Portugal
RSC Adv. 2025 Jan 23;15(4):2298-2316. doi: 10.1039/d4ra08245a.
Despite significant strides in improving cancer survival rates, the global cancer burden remains substantial, with an anticipated rise in new cases. Immune checkpoints, key regulators of immune responses, play a crucial role in cancer evasion mechanisms. The discovery of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 has revolutionized cancer treatment, with monoclonal antibodies (mAbs) becoming widely prescribed. However, challenges with current mAb ICIs, such as limited oral bioavailability, adverse effects, and high costs, underscore the need to explore alternative small-molecule inhibitors. In this work, we aimed to identify new potential ICI among all FDA-approved drugs. We employed QSAR models to predict PD-1/PD-L1 inhibition, utilizing a diverse dataset of 29 197 molecules sourced from ChEMBL, PubChem, and recent literature. Machine learning techniques, including Random Forest, Support Vector Machine, and Convolutional Neural Network, were employed for benchmarking to assess model performance. Additionally, we undertook a drug repurposing strategy, leveraging the best model for a virtual screening campaign involving 1576 off-patent approved drugs. Only two virtual screening hits were proposed based on the criteria established for this approach, including: (1) QSAR probability of being active against PD-L1; (2) QSAR applicability domain; (3) prediction of the affinity between the PD-L1 and ligands through molecular docking. One of the proposed hits was sonidegib, an anticancer drug, featuring a biphenyl system. Sonidegib was subsequently validated for PD-1/PD-L1 binding modulation using ELISA and flow cytometry. This integrated approach, which combines computer-aided drug design (CADD) tools, QSAR modelling, drug repurposing, and molecular docking, offers a pioneering strategy to expedite drug discovery for PD-1/PD-L1 axis inhibition. The findings underscore the potential to identify a wider range small molecules to contribute to the ongoing efforts to advancing cancer immunotherapy.
尽管在提高癌症生存率方面取得了显著进展,但全球癌症负担仍然沉重,新病例预计还会增加。免疫检查点作为免疫反应的关键调节因子,在癌症逃逸机制中起着至关重要的作用。针对PD-1/PD-L1的免疫检查点抑制剂(ICI)的发现彻底改变了癌症治疗方式,单克隆抗体(mAb)得到了广泛应用。然而,当前mAb ICI存在一些挑战,如口服生物利用度有限、副作用和成本高昂,这凸显了探索替代小分子抑制剂的必要性。在这项工作中,我们旨在在所有FDA批准的药物中识别新的潜在ICI。我们利用从ChEMBL、PubChem和近期文献中获取的29197个分子的多样化数据集,采用定量构效关系(QSAR)模型来预测PD-1/PD-L1抑制作用。使用包括随机森林、支持向量机和卷积神经网络在内的机器学习技术进行基准测试,以评估模型性能。此外,我们采用了药物再利用策略,利用最佳模型对1576种已获批的非专利药物进行虚拟筛选。根据为此方法设定的标准,仅提出了两个虚拟筛选命中物,包括:(1)对PD-L1有活性的QSAR概率;(2)QSAR适用域;(3)通过分子对接预测PD-L1与配体之间的亲和力。其中一个提出的命中物是索尼德吉,一种具有联苯系统的抗癌药物。随后使用酶联免疫吸附测定(ELISA)和流式细胞术验证了索尼德吉对PD-1/PD-L1结合的调节作用。这种结合计算机辅助药物设计(CADD)工具、QSAR建模、药物再利用和分子对接的综合方法,为加速针对PD-1/PD-L1轴抑制的药物发现提供了一种开创性策略。研究结果强调了识别更广泛小分子的潜力,以助力推进癌症免疫治疗的持续努力。