Vatandoost Hossein, Abdalaziz Moustafa, Sedaghati Ramin, Rakheja Subhash
Department of Mechanical, Industrial and Aerospace Engineering, Concordia University, Montreal, QC, Canada.
J Vib Control. 2025 Jan;31(1-2):151-165. doi: 10.1177/10775463241248963. Epub 2024 May 6.
Magnetorheological (MR) fluid (MRF) dampers, serving as fail-safe semi-active devices, exhibit nonlinear hysteresis characteristics, emphasizing the necessity for accurate modeling to formulate effective control strategies in smart systems. This paper introduces a novel stop operator-based Prandtl-Ishlinskii (PI) model, featuring a reduced parameter set (seven), designed to estimate the nonlinear hysteresis properties of a large-scale bypass MRF damper with variable stiffness capabilities under varying applied current. With only seven parameters, the model realizes current, displacement, and rate dependencies. The force-displacement and force-velocity responses of the designed MRF damper were experimentally characterized under broad ranges of applied current (0-2 A), excitation frequency (0.5-4 Hz), and displacement amplitude (1-2.5 mm). A training dataset was subsequently used to develop a novel field-dependent modified PI model, incorporating multiple hysteresis operators with and without a friction element. The proposed model accurately predicted the MRF damper behavior within the training dataset, and its validity was assessed against data from diverse experimental conditions. The PI model with friction element generally outperformed the model without friction when frequency exceeds 0.5 Hz, demonstrating its ability to characterize nonlinear hysteresis force-displacement and force-velocity properties of the MRF damper under the ranges of applied current and excitations considered with reasonable accuracy. Experimental data were also estimated by the Bouc-Wen model, and compared with those obtained via the formulated PI model, affirming the overall superiority of the proposed PI models considering the computational cost, and total number of parameters. Leveraging the simplicity, minimal parameter requirements, and analytic invertibility of PI models, the proposed PI model is considered a superior choice for modeling and subsequently controlling smart structures employing MRF dampers.
磁流变(MR)流体阻尼器作为故障安全型半主动装置,具有非线性滞后特性,这凸显了在智能系统中进行精确建模以制定有效控制策略的必要性。本文介绍了一种基于新型停止算子的普朗特 - 伊什林斯基(PI)模型,其参数集减少(七个),旨在估计具有变刚度能力的大型旁通式MR流体阻尼器在不同施加电流下的非线性滞后特性。该模型仅用七个参数就实现了对电流、位移和速率的依赖性。在较宽的施加电流范围(0 - 2 A)、激励频率范围(0.5 - 4 Hz)和位移幅值范围(1 - 2.5 mm)下,对所设计的MR流体阻尼器的力 - 位移和力 - 速度响应进行了实验表征。随后使用一个训练数据集来开发一种新型的场相关修正PI模型,该模型包含有和没有摩擦元件的多个滞后算子。所提出的模型在训练数据集中准确地预测了MR流体阻尼器的行为,并根据来自不同实验条件的数据评估了其有效性。当频率超过0.5 Hz时,带有摩擦元件的PI模型通常比没有摩擦元件的模型表现更好,这表明它能够在所考虑的施加电流和激励范围内,以合理的精度表征MR流体阻尼器的非线性滞后力 - 位移和力 - 速度特性。还通过Bouc - Wen模型估计了实验数据,并与通过所制定的PI模型获得的数据进行了比较,考虑到计算成本和参数总数,证实了所提出的PI模型的总体优越性。利用PI模型的简单性、最少的参数要求和解析可逆性,所提出的PI模型被认为是对采用MR流体阻尼器的智能结构进行建模和后续控制的优越选择。