Liao Wenjing, Lin Jinduan, Wang Wenli, Zhang Ming, Chen Yanfang, Li Xin, Liu Huan, Wang Pan Xia, Zhao Guojun, Fu Jijun, Wu Xiaoqian
The Sixth Affiliated Hospital, Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target and Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, The Fifth Affiliated Hospital, Guangzhou, China.
Department of Pharmacy, Guangzhou Eighth People's Hospital, Guangzhou Medical University, Guangzhou, China.
Front Pharmacol. 2025 Jan 10;15:1503757. doi: 10.3389/fphar.2024.1503757. eCollection 2024.
Myocardial infarction (MI) is a leading cause of morbidity and mortality worldwide, and mitigating oxidative stress is crucial in managing MI. Nuclear factor erythroid 2-related factor 2 (Nrf2) plays a critical role in combating oxidative stress and facilitating cardiac remodeling post-MI. Here, we engineered Cerium oxide (CeO) nanoparticle-guided assemblies of ceria/Nrf2 nanocomposites to deliver Nrf2 plasmids. The CeO/Nrf2 nanocomposites effectively activated the Nrf2/antioxidant response element (ARE) signaling pathway both and . In a mouse MI model induced by permanent ligation of the left anterior descending artery (LAD), CeO/Nrf2 nanocomposites were administered via tail vein injection, predominantly targeting circulating monocytes and macrophages which will be recruited to the heart post MI due to the acute inflammatory response. We demonstrated that CeO/Nrf2 nanocomposites alleviated cardiac systolic dysfunction and significantly reduced infarct size and scar fibrosis post-MI. Furthermore, CeO/Nrf2 nanocomposites effectively mitigated MI-induced oxidative stress and downregulated Nrf2-regulated inflammatory genes (tumor necrosis factor-α, IL-6, and inducible nitric oxide synthase), thereby reducing cardiomyocyte apoptosis. These findings indicate that CeO/Nrf2 nanocomposites significantly enhance Nrf2 signaling activation and confer protection against MI. This study identifies CeO/Nrf2 nanocomposites as a promising strategy for post-MI therapy.
心肌梗死(MI)是全球发病和死亡的主要原因,减轻氧化应激对心肌梗死的治疗至关重要。核因子红细胞2相关因子2(Nrf2)在对抗氧化应激和促进心肌梗死后的心脏重塑中起关键作用。在此,我们设计了氧化铈(CeO)纳米颗粒引导的二氧化铈/Nrf2纳米复合材料组装体来递送Nrf2质粒。CeO/Nrf2纳米复合材料在体内和体外均有效激活了Nrf2/抗氧化反应元件(ARE)信号通路。在通过左冠状动脉前降支(LAD)永久性结扎诱导的小鼠心肌梗死模型中,通过尾静脉注射给予CeO/Nrf2纳米复合材料,主要靶向循环中的单核细胞和巨噬细胞,这些细胞在心肌梗死后会因急性炎症反应而被募集到心脏。我们证明,CeO/Nrf2纳米复合材料减轻了心脏收缩功能障碍,并显著减小了心肌梗死后的梗死面积和瘢痕纤维化。此外,CeO/Nrf2纳米复合材料有效减轻了心肌梗死诱导的氧化应激,并下调了Nrf2调节的炎症基因(肿瘤坏死因子-α、白细胞介素-6和诱导型一氧化氮合酶),从而减少了心肌细胞凋亡。这些发现表明,CeO/Nrf2纳米复合材料显著增强了Nrf2信号激活,并赋予了对心肌梗死的保护作用。本研究确定CeO/Nrf2纳米复合材料是一种有前途的心肌梗死后治疗策略。