Castanho Isabel, Yeganeh Pourya Naderi, Boix Carles A, Morgan Sarah L, Mathys Hansruedi, Prokopenko Dmitry, White Bartholomew, Soto Larisa M, Pegoraro Giulia, Shah Saloni, Ploumakis Athanasios, Kalavros Nikolas, Bennett David A, Lange Christoph, Kim Doo Yeon, Bertram Lars, Tsai Li-Huei, Kellis Manolis, Tanzi Rudolph E, Hide Winston
Harvard Medical School, Boston, MA, USA.
Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA.
bioRxiv. 2025 Jan 15:2025.01.13.632801. doi: 10.1101/2025.01.13.632801.
A significant proportion of individuals maintain healthy cognitive function despite having extensive Alzheimer's disease (AD) pathology, known as cognitive resilience. Understanding the molecular mechanisms that protect these individuals can identify therapeutic targets for AD dementia. This study aims to define molecular and cellular signatures of cognitive resilience, protection and resistance, by integrating genetics, bulk RNA, and single-nucleus RNA sequencing data across multiple brain regions from AD, resilient, and control individuals.
We analyzed data from the Religious Order Study and the Rush Memory and Aging Project (ROSMAP), including bulk (n=631) and multi-regional single nucleus (n=48) RNA sequencing. Subjects were categorized into AD, resilient, and control based on β-amyloid and tau pathology, and cognitive status. We identified and prioritized protected cell populations using whole genome sequencing-derived genetic variants, transcriptomic profiling, and cellular composition distribution.
Transcriptomic results, supported by GWAS-derived polygenic risk scores, place cognitive resilience as an intermediate state in the AD continuum. Tissue-level analysis revealed 43 genes enriched in nucleic acid metabolism and signaling that were differentially expressed between AD and resilience. Only GFAP (upregulated) and KLF4 (downregulated) showed differential expression in resilience compared to controls. Cellular resilience involved reorganization of protein folding and degradation pathways, with downregulation of Hsp90 and selective upregulation of Hsp40, Hsp70, and Hsp110 families in excitatory neurons. Excitatory neuronal subpopulations in the entorhinal cortex (ATP8B1+ and MEF2C) exhibited unique resilience signaling through neurotrophin (modulated by LINGO1) and angiopoietin (ANGPT2/TEK) pathways. We identified MEF2C, ATP8B1, and RELN as key markers of resilient excitatory neuronal populations, characterized by selective vulnerability in AD. Protective rare variant enrichment highlighted vulnerable populations, including somatostatin (SST) inhibitory interneurons, validated through immunofluorescence showing co-expression of rare variant associated RBFOX1 and KIF26B in SST+ neurons in the dorsolateral prefrontal cortex. The maintenance of excitatory-inhibitory balance emerges as a key characteristic of resilience.
We identified molecular and cellular hallmarks of cognitive resilience, an intermediate state in the AD continuum. Resilience mechanisms include preservation of neuronal function, maintenance of excitatory/inhibitory balance, and activation of protective signaling pathways. Specific excitatory neuronal populations appear to play a central role in mediating cognitive resilience, while a subset of vulnerable SST interneurons likely provide compensation against AD-associated dysregulation. This study offers a framework to leverage natural protective mechanisms to mitigate neurodegeneration and preserve cognition in AD.
相当一部分人尽管存在广泛的阿尔茨海默病(AD)病理特征,但仍保持健康的认知功能,这被称为认知弹性。了解保护这些个体的分子机制可以确定AD痴呆的治疗靶点。本研究旨在通过整合来自AD患者、具有认知弹性者和对照个体多个脑区的遗传学、批量RNA和单核RNA测序数据,来定义认知弹性、保护和抵抗的分子及细胞特征。
我们分析了宗教团体研究和拉什记忆与衰老项目(ROSMAP)的数据,包括批量(n = 631)和多区域单核(n = 48)RNA测序。根据β-淀粉样蛋白和tau病理特征以及认知状态,将受试者分为AD组、具有认知弹性组和对照组。我们使用全基因组测序衍生的遗传变异、转录组分析和细胞组成分布来识别并优先考虑受保护的细胞群体。
转录组学结果得到全基因组关联研究(GWAS)衍生的多基因风险评分支持,表明认知弹性是AD连续体中的一种中间状态。组织水平分析显示,在核酸代谢和信号传导方面富集的43个基因在AD组和具有认知弹性组之间存在差异表达。与对照组相比,只有胶质纤维酸性蛋白(GFAP上调)和 Kruppel样因子4(KLF4下调)在具有认知弹性组中表现出差异表达。细胞弹性涉及蛋白质折叠和降解途径的重组。在兴奋性神经元中,热休克蛋白90(Hsp90)下调,而热休克蛋白40(Hsp40)、热休克蛋白70(Hsp70)和热休克蛋白110(Hsp110)家族选择性上调。内嗅皮质中的兴奋性神经元亚群(ATP8B1 +和MEF2C)通过神经营养因子(由LINGO1调节)和血管生成素(ANGPT2/TEK)途径表现出独特的弹性信号。我们确定MEF2C、ATP8B1和RELA是具有弹性的兴奋性神经元群体的关键标志物,其特征是在AD中具有选择性易损性。保护性罕见变异富集突出了易损群体,包括生长抑素(SST)抑制性中间神经元,通过免疫荧光验证,显示在背外侧前额叶皮质的SST +神经元中,罕见变异相关的RBFOX1和KIF26B共表达。兴奋性-抑制性平衡的维持成为弹性的一个关键特征。
我们确定了认知弹性的分子和细胞特征,这是AD连续体中的一种中间状态。弹性机制包括神经元功能的保存、兴奋性/抑制性平衡的维持以及保护性信号通路的激活。特定的兴奋性神经元群体似乎在介导认知弹性中起核心作用,而一部分易损的SST中间神经元可能对AD相关的失调提供补偿。本研究提供了一个框架,以利用自然保护机制来减轻神经退行性变并在AD中保留认知。