Suppr超能文献

单细胞RNA测序和机器学习为治疗结直肠癌中的耐药性持久性细胞提供了候选药物。

Single-cell RNA sequencing and machine learning provide candidate drugs against drug-tolerant persister cells in colorectal cancer.

作者信息

Nojima Yosui, Yao Ryoji, Suzuki Takashi

机构信息

Center for Mathematical Modeling and Data Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan.

Department of Cell Biology, Cancer Institute, Japanese Foundation for Cancer Research, 3-8-31 Ariake, Koto-ku, Tokyo 135-8550, Japan.

出版信息

Biochim Biophys Acta Mol Basis Dis. 2025 Mar;1871(3):167693. doi: 10.1016/j.bbadis.2025.167693. Epub 2025 Jan 25.

Abstract

Drug resistance often stems from drug-tolerant persister (DTP) cells in cancer. These cells arise from various lineages and exhibit complex dynamics. However, effectively targeting DTP cells remains challenging. We used single-cell RNA sequencing (scRNA-Seq) data and machine learning (ML) models to identify DTP cells in patient-derived organoids (PDOs) and computationally screened candidate drugs targeting these cells in familial adenomatous polyposis (FAP), associated with a high risk of colorectal cancer. Three PDOs (benign and malignant tumor organoids and a normal organoid) were evaluated using scRNA-Seq. ML models constructed based on public scRNA-Seq data classified DTP versus non-DTP cells. Candidate drugs for DTP cells in a malignant tumor organoid were identified from public drug sensitivity data. From FAP scRNA-Seq data, a specific TC1 cell cluster in tumor organoids was identified. The ML model identified up to 36 % of TC1 cells as DTP cells, a higher proportion than those for other clusters. A viability assay using a malignant tumor organoid demonstrated that YM-155 and THZ2 exert synergistic effects with trametinib. The constructed ML model is effective for DTP cell identification based on scRNA-Seq data for FAP and provides candidate treatments. This approach may improve DTP cell targeting in the treatment of colorectal and other cancers.

摘要

耐药性通常源于癌症中的耐药性持留细胞(DTP)。这些细胞起源于不同谱系,表现出复杂的动态变化。然而,有效靶向DTP细胞仍然具有挑战性。我们使用单细胞RNA测序(scRNA-Seq)数据和机器学习(ML)模型来识别患者来源的类器官(PDO)中的DTP细胞,并通过计算筛选出针对家族性腺瘤性息肉病(FAP)中这些细胞的候选药物,FAP与结直肠癌的高风险相关。使用scRNA-Seq评估了三个PDO(良性和恶性肿瘤类器官以及一个正常类器官)。基于公开的scRNA-Seq数据构建的ML模型对DTP细胞和非DTP细胞进行了分类。从公开的药物敏感性数据中确定了恶性肿瘤类器官中DTP细胞的候选药物。从FAP的scRNA-Seq数据中,在肿瘤类器官中鉴定出一个特定的TC1细胞簇。ML模型将高达36%的TC1细胞鉴定为DTP细胞,这一比例高于其他簇。使用恶性肿瘤类器官进行的活力测定表明,YM-155和THZ2与曲美替尼发挥协同作用。构建的ML模型对于基于FAP的scRNA-Seq数据识别DTP细胞是有效的,并提供了候选治疗方法。这种方法可能会改善结直肠癌和其他癌症治疗中对DTP细胞的靶向作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验