Hui Juan, Ran Peng, Su Yirong, Yang Lurong, Xu Xuehui, Liu Tianyu, Gu Yuzhang, She Xiaojian, Yang Yang Michael
State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China.
Jiaxing Key Laboratory of Photonic Sensing & Intelligent Imaging, Intelligent Optics & Photonics Research Center, Jiaxing Research Institute of Zhejiang University, Jiaxing, Zhejiang, 314041, China.
Adv Mater. 2025 Mar;37(10):e2416360. doi: 10.1002/adma.202416360. Epub 2025 Jan 28.
Traditional energy-integration X-ray imaging systems rely on total X-ray intensity for image contrast, ignoring energy-specific information. Recently developed multilayer stacked scintillators have enabled multispectral, large-area flat-panel X-ray imaging (FPXI), enhancing material discrimination capabilities. However, increased layering can lead to mutual excitation, which may affect the accurate discrimination of X-ray energy. This issue is tackled by proposing a novel design strategy utilizing rare earth ions doped quantum-cutting scintillators as the top layer. These scintillators create new luminescence centers via energy transfer, resulting in a significantly larger absorption-emission shift, as well as the potential to double the photoluminescence quantum yield (PLQY) and enhance light output. To verify this concept, a three-layer stacked scintillator detector is developed using ytterbium ions (Yb)-doped CsPbCl perovskite nanocrystals (PeNCs) as the top layer, which offers a high PLQY of over 100% and a significant absorption-emission shift of 570 nm. This configuration, CsAgCl and CsCuI as the middle and bottom layers, respectively, ensures non-overlapping optical absorption and radioluminescence (RL) emission spectra. By calculating the optimal thickness for each layer to absorb specific X-ray energies, the detector demonstrates distinct absorption differences across various energy bands, enhancing the identification of materials with similar densities.
传统的能量积分X射线成像系统依靠总X射线强度来实现图像对比度,而忽略了能量特定信息。最近开发的多层堆叠闪烁体实现了多光谱、大面积平板X射线成像(FPXI),增强了材料辨别能力。然而,层数增加会导致互激发,这可能会影响X射线能量的准确辨别。通过提出一种新颖的设计策略来解决这个问题,该策略利用掺杂稀土离子的量子切割闪烁体作为顶层。这些闪烁体通过能量转移产生新的发光中心,导致吸收-发射位移显著增大,以及光致发光量子产率(PLQY)有可能翻倍并提高光输出。为了验证这一概念,开发了一种三层堆叠闪烁体探测器,使用掺杂镱离子(Yb)的CsPbCl钙钛矿纳米晶体(PeNCs)作为顶层,其具有超过100%的高PLQY和570 nm的显著吸收-发射位移。这种配置,分别以CsAgCl和CsCuI作为中间层和底层,确保了光学吸收和放射发光(RL)发射光谱不重叠。通过计算每层吸收特定X射线能量的最佳厚度,该探测器在各个能带展示出明显的吸收差异,增强了对密度相似材料的识别。