Suppr超能文献

建立用于神经性疼痛大鼠硬膜外脊髓刺激的电生理记录平台。

Establishing an Electrophysiological Recording Platform for Epidural Spinal Cord Stimulation in Neuropathic Pain Rats.

作者信息

Yang Chin-Tsang, Shyu Bai-Chuang, Lin Wei-Tso, Lu Kuo-Hsiang, Lin Chung-Ren, Wen Yeong-Ray, Chen Chih-Cheng

机构信息

Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.

Department of Leisure Industry and Health Promotion, National Ilan University, Yilan, Taiwan.

出版信息

J Pain Res. 2025 Jan 21;18:327-340. doi: 10.2147/JPR.S489420. eCollection 2025.

Abstract

PURPOSE

Spinal cord stimulation (SCS) is pivotal in treating chronic intractable pain. To elucidate the mechanism of action among conventional and current novel types of SCSs, a stable and reliable electrophysiology model in the consensus animals to mimic human SCS treatment is essential. We have recently developed a new in vivo implantable pulsed-ultrahigh-frequency (pUHF) SCS platform for conducting behavioral and electrophysiological studies in rats. However, some technical details were not fully understood. This study comprehensively analyzed methodology and technical challenges and pitfalls encountered during the development and implementation of this model.

MATERIALS AND METHODS

Employing a newly developed pUHF-SCS (±3 V, 2 Hz pulses with 500-kHz biphasic radiofrequency sinewaves), we assessed analgesic effect and changes of evoked local field potentials (eLFPs) in the bilateral primary somatosensory and anterior cingulate cortices in the rats with or without spared nerve injury (SNI) using the platform. The placement of stimulating needle electrodes in the hind paw was examined and optimized for functionality.

RESULTS

SNI enhanced the C component of eLFPs in bilateral cortexes elicited by stimulating the contralateral but not the ipsilateral lateral aspect of the hind paw. Repeated pUHF-SCS significantly reversed SNI-induced paw hypersensitivity and reduced C-component enhancement. An impedance test can determine an optimal SCS electrode function: an SCS discharge threshold of 100-400 μA for cortical activation or a motor threshold of 150-600 μA for the hind limbs. Impedance increased due to growth of fibrotic tissue but stabilized after post-implantation day 12.

CONCLUSION

We presented a reliable electrophysiological platform for SCS application in rat neuropathic pain model and demonstrated potent analgesic effects of pUHF-SCS. All device implantations or pUHF-SCS per se did not cause evident spinal cord damage. This safe and stable platform provides an in vivo rat model for SCS investigation of mechanisms of action and device innovation.

摘要

目的

脊髓刺激(SCS)在治疗慢性顽固性疼痛中起关键作用。为阐明传统和当前新型SCS的作用机制,在共识动物中建立一个稳定可靠的电生理模型以模拟人类SCS治疗至关重要。我们最近开发了一种新的体内可植入脉冲超高频(pUHF)SCS平台,用于在大鼠中进行行为和电生理研究。然而,一些技术细节尚未完全明了。本研究全面分析了该模型开发和实施过程中遇到的方法学、技术挑战及陷阱。

材料与方法

采用新开发的pUHF-SCS(±3V,2Hz脉冲,500kHz双相射频正弦波),我们使用该平台评估了有或无保留神经损伤(SNI)的大鼠双侧初级体感皮层和前扣带回皮层中诱发局部场电位(eLFP)的镇痛效果及变化。检查并优化了后爪刺激针电极的放置以确保功能正常。

结果

SNI增强了刺激后爪对侧而非同侧外侧时双侧皮层中eLFP的C成分。重复进行pUHF-SCS可显著逆转SNI诱导的爪部超敏反应并降低C成分增强。阻抗测试可确定最佳SCS电极功能:皮层激活的SCS放电阈值为100 - 400μA,后肢运动阈值为150 - 600μA。阻抗因纤维化组织生长而增加,但在植入后第12天稳定。

结论

我们展示了一个用于大鼠神经病理性疼痛模型中SCS应用的可靠电生理平台,并证明了pUHF-SCS的强效镇痛作用。所有装置植入或pUHF-SCS本身均未造成明显脊髓损伤。这个安全稳定的平台为SCS作用机制研究和装置创新提供了一个体内大鼠模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/384f/11771369/84809dd1b73f/JPR-18-327-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验