Suppr超能文献

胃癌机器人根治术后患者并发症发生情况的列线图预测模型的构建与验证

Construction and validation of a nomogram prediction model for the occurrence of complications in patients following robotic radical surgery for gastric cancer.

作者信息

Ma Yuqi, Deng Yuan, Wan Haohao, Ma Diaolong, Ma Liang, Fan Wanqi, Liu JiXiang, Hu Ming, Fan RuiFang, Ma YunTao

机构信息

Department of General Surgery, Gansu Provincial Hospital, Lanzhou, 730000, China.

The First Clinical Medical College, Gansu University of Traditional Chinese Medicine, Lanzhou, 730000, China.

出版信息

Langenbecks Arch Surg. 2025 Jan 28;410(1):54. doi: 10.1007/s00423-024-03594-4.

Abstract

BACKGROUND

In the last two decades, robotic-assisted gastrectomy has become a widely adopted surgical option for gastric cancer (GC) treatment. Despite its popularity, postoperative complications can significantly deteriorate patient quality of life and prognosis. Therefore, identifying risk factors for these complications is crucial for early detection and intervention.

OBJECTIVE

This research is designed to construct and validate a predictive model for assessing the risk of postoperative complications in patients undergoing robotic-assisted radical gastrectomy.

METHODS

A retrospective analysis was conducted on 500 GC patients from Gansu Provincial People's Hospital between December 2016 and October 2023. These patients formed the training cohort. An additional 136 patients from the 940th Hospital of Joint Logistic Support Force, the Chinese People's Liberation Army as the external validation cohort. Patients were categorized into groups with and without complications. Data collected included demographic details, laboratory results, CT quantitative body composition analysis, and clinical information. Variable selection was conducted through Lasso regression, succeeded by multivariable logistic regression to pinpoint independent risk factors. These elements facilitated the construction of a nomogram for prediction. The model's performance underwent internal validation via bootstrap techniques and external validation through a validation cohort. The efficacy of the model was quantified by the area under the receiver operating characteristic (ROC) curve (AUC), evaluated for calibration using calibration curves and the Hosmer-Lemeshow test, and assessed for clinical utility through decision curve analysis (DCA).

RESULTS

Of the 500 patients in the training cohort, 65 experienced complications, a rate of 13%. The validation cohort had a similar complication rate of 13.24% (18 out of 136 patients). Independent risk factors identified included tumor diameter (OR = 1.99, 95% CI = 1.07-3.73), TNM stage III (OR = 2.12, 95% CI = 1.03-4.36), ASA class I (OR = 0.26, 95% CI = 0.13-0.53), ASA class III (OR = 4.75, 95% CI = 2.12-10.62), and visceral fat area (VFA) (OR = 2.52, 95% CI = 1.10-5.79). The nomogram demonstrated good discrimination (AUC = 0.81, 95% CI: 0.76-0.87) in internal validation and (AUC = 0.79, 95% CI: 0.67-0.90) in external validation. Both validations confirmed the model's accurate calibration and significant clinical utility, with net benefits observed at probability thresholds ranging from 2 to 79% and 2-71%.

CONCLUSION

The developed nomogram, based on five independent risk factors-tumor diameter, TNM stage III, ASA class I, ASA class III, and VFA-effectively predicts the risk of complications in patients undergoing robotic-assisted radical gastrectomy, offering a valuable tool for clinical decision-making.

摘要

背景

在过去二十年中,机器人辅助胃切除术已成为胃癌(GC)治疗中广泛采用的手术选择。尽管其广受欢迎,但术后并发症会显著恶化患者的生活质量和预后。因此,识别这些并发症的风险因素对于早期检测和干预至关重要。

目的

本研究旨在构建并验证一个预测模型,以评估接受机器人辅助根治性胃切除术患者术后并发症的风险。

方法

对2016年12月至2023年10月期间甘肃省人民医院的500例GC患者进行回顾性分析。这些患者组成训练队列。另外,将中国人民解放军联勤保障部队第940医院的136例患者作为外部验证队列。患者被分为有并发症组和无并发症组。收集的数据包括人口统计学细节、实验室检查结果、CT定量身体成分分析和临床信息。通过Lasso回归进行变量选择,随后通过多变量逻辑回归确定独立风险因素。这些因素有助于构建预测列线图。该模型的性能通过自举技术进行内部验证,并通过验证队列进行外部验证。模型的有效性通过受试者操作特征(ROC)曲线下面积(AUC)进行量化,使用校准曲线和Hosmer-Lemeshow检验评估校准情况,并通过决策曲线分析(DCA)评估临床实用性。

结果

训练队列中的500例患者中,65例出现并发症,发生率为13%。验证队列的并发症发生率相似,为13.24%(136例患者中有18例)。确定的独立风险因素包括肿瘤直径(OR = 1.99,95%CI = 1.07 - 3.73)、TNM III期(OR = 2.12,95%CI = 1.03 - 4.36)、ASA I级(OR = 0.26,95%CI = 0.13 - 0.53)、ASA III级(OR = 4.75,95%CI = 2.12 - 10.62)和内脏脂肪面积(VFA)(OR = 2.52,95%CI = 1.10 - 5.79)。列线图在内部验证中显示出良好的区分度(AUC = 0.81,95%CI:0.76 - 0.87),在外部验证中为(AUC = 0.79,95%CI:0.67 - 0.90)。两项验证均证实了该模型的准确校准和显著的临床实用性,在概率阈值为2%至79%和2%至71%时观察到净效益。

结论

基于肿瘤直径、TNM III期、ASA I级、ASA III级和VFA这五个独立风险因素开发的列线图,有效地预测了接受机器人辅助根治性胃切除术患者的并发症风险,为临床决策提供了有价值的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验