Suppr超能文献

基于胃癌患者肿瘤光谱 CT 参数和内脏脂肪面积的术后并发症预测列线图

A nomogram for predicting postoperative complications based on tumor spectral CT parameters and visceral fat area in gastric cancer patients.

机构信息

Department of Radiology, Affiliated Hospital of Jiangnan University, Wuxi City 214062, Jiangsu Province, China.

Department of Clinical Science, Philips Healthcare, Shanghai 200233, China.

出版信息

Eur J Radiol. 2023 Oct;167:111072. doi: 10.1016/j.ejrad.2023.111072. Epub 2023 Aug 31.

Abstract

PURPOSE

To construct a nomogram combining tumor spectral CT parameters and visceral fat area (VFA) to predict postoperative complications (POCs) in patients with gastric cancer (GC).

METHOD

This retrospective study included 101 GC patients who underwent preoperative abdominal spectral CT scan and were divided into two groups (37 with POCs and 64 without POCs) according to the Clavien-Dindo classification standard. Logistic regression was used to establish spectral, VFA, and combined models for predicting POCs. The combined prediction model was presented as a nomogram, and the diagnostic performance of each model was evaluated using receiver operating characteristic (ROC) curve analysis.

RESULTS

The AUCs of the VFA and spectral model were 0.71 (95% CI: 0.62-0.80) and 0.81 (95% CI: 0.72-0.88), respectively. VFA, the slope of spectral curve (λ) in venous phase (λ-VP) and tumor Hounsfield units on monoenergetic images 40 keV in VP (MonoE) were independent predictors of POCs in GC. The nomogram yielded an AUC of 0.89 (95% CI: 0.81-0.94). The combined model was superior to the VFA or spectral models by comparing their AUCs (P = 0.000 and 0.022).

CONCLUSIONS

The nomogram based on two tumor spectral parameters (λ-VP, MonoE) and VFA could serve as a convenient tool for predicting the POCs of GC patients.

摘要

目的

构建一个结合肿瘤能谱 CT 参数和内脏脂肪面积(VFA)的列线图,以预测胃癌(GC)患者术后并发症(POC)。

方法

本回顾性研究纳入了 101 例接受术前腹部能谱 CT 扫描的 GC 患者,根据 Clavien-Dindo 分类标准分为两组(37 例 POC 组和 64 例无 POC 组)。采用逻辑回归建立预测 POC 的能谱、VFA 和联合模型。联合预测模型以列线图表示,并通过接受者操作特征(ROC)曲线分析评估每个模型的诊断性能。

结果

VFA 和能谱模型的 AUC 分别为 0.71(95%CI:0.62-0.80)和 0.81(95%CI:0.72-0.88)。VFA、静脉期能谱曲线斜率(λ-VP)和 VP 单能量图像上肿瘤的 Hounsfield 单位(MonoE)是 GC 患者 POC 的独立预测因素。列线图的 AUC 为 0.89(95%CI:0.81-0.94)。通过比较 AUC,联合模型优于 VFA 或能谱模型(P=0.000 和 0.022)。

结论

基于两个肿瘤能谱参数(λ-VP、MonoE)和 VFA 的列线图可作为预测 GC 患者 POC 的便捷工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验