气单胞菌溶素纳米孔电化学
Aerolysin Nanopore Electrochemistry.
作者信息
Li Jun-Ge, Ying Yi-Lun, Long Yi-Tao
机构信息
Molecular Sensing and Imaging Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing 210023, China.
出版信息
Acc Chem Res. 2025 Feb 18;58(4):517-528. doi: 10.1021/acs.accounts.4c00630. Epub 2025 Jan 28.
Ions are the crucial signaling components for living organisms. In cells, their transportation across pore-forming membrane proteins is vital for regulating physiological functions, such as generating ionic current signals in response to target molecule recognition. This ion transport is affected by confined interactions and local environments within the protein pore. Therefore, the pore-forming protein can efficiently transduce the characteristics of each target molecule into ion-transport-mediated signals with high sensitivity. Inspired by nature, various protein pores have been developed into high-throughput and label-free nanopore sensors for single-molecule detection, enabling rapid and accurate readouts. In particular, aerolysin, a key virulence factor of , exhibits a high sensitivity in generating ionic current fingerprints for detecting subtle differences in the sequence, conformation, and structure of DNA, proteins, polypeptides, oligosaccharides, and other molecules. Aerolysin features a cap that is approximately 14 nm wide on the side and a central pore that is about 10 nm long with a minimum diameter of around 1 nm. Its long lumen, with 11 charged rings at two entrances and neutral amino acids in between, facilitates the dwelling of the single analyte within the pore. This characteristic enables rich interactions between the well-defined residues within the pore and the analyte. As a result, the ionic current signal offers a unique molecular fingerprint, extending beyond the traditional volume exclusion model in nanopore sensing. In 2006, aerolysin was first reported to discriminate conformational differences of single peptides, opening the door for a rapidly growing field of aerolysin nanopore electrochemistry. Over the years, various mutant aerolysin nanopores have emerged, associated with advanced instrumentation and data analysis algorithms, enabling the simultaneous identification of over 30 targets with the number still increasing. Aerolysin nanopore electrochemistry in particular allows time-resolved qualitative and quantitative analysis ranging from DNA sequencing, proteomics, enzyme kinetics, and single-molecule reactions to potential clinical diagnostics. Especially, the feasibility of aerolysin nanopore electrochemistry in dynamic quantitative analysis would revolutionize omics studies at the single-molecule level, paving the way for the promising field of single-molecule temporal omics. Despite the success of this approach so far, it remains challenging to understand how confined interactions correlate to the distinguishable ionic signatures. Recent attempts have added correction terms to the volume exclusion model to account for variations in ion mobility within the nanopore caused by the confined interactions between the aerolysin and the analyte. Therefore, in this Account, we revisit the origin of the current blockade induced by target molecules inside the aerolysin nanopore. We highlight the contributions of the confined noncovalent interactions to the sensing ability of the aerolysin nanopore through the corrected conductance model. This Account then describes the design of interaction networks within the aerolysin nanopore, including electrostatic, hydrophobic, hydrogen-bonding, cation-π, and ion-charged amino acid interactions, for ultrasensitive biomolecular identification and quantification. Finally, we provide an outlook on further understanding the noncovalent interaction network inside the aerolysin nanopore, improving the manipulating and fine-tuning of confined electrochemistry toward a broad range of practical applications.
离子是生物体至关重要的信号传导成分。在细胞中,它们通过形成孔道的膜蛋白进行运输,对于调节生理功能至关重要,例如在响应靶分子识别时产生离子电流信号。这种离子运输受蛋白质孔道内的受限相互作用和局部环境影响。因此,形成孔道的蛋白质能够高效地将每个靶分子的特征转化为具有高灵敏度的离子运输介导信号。受自然启发,各种蛋白质孔道已被开发成用于单分子检测的高通量、无标记纳米孔传感器,能够实现快速准确的读数。特别是,气单胞菌溶素(一种[此处原文缺失相关信息]的关键毒力因子)在生成离子电流指纹以检测DNA、蛋白质、多肽、寡糖和其他分子的序列、构象和结构的细微差异方面表现出高灵敏度。气单胞菌溶素在一侧有一个宽约14 nm的帽,中央孔道长约10 nm,最小直径约为1 nm。其长内腔在两个入口处有11个带电环,中间是中性氨基酸,便于单个分析物在孔道内停留。这一特性使得孔道内明确的残基与分析物之间能够进行丰富的相互作用。结果,离子电流信号提供了独特的分子指纹,超越了纳米孔传感中的传统体积排阻模型。2006年,首次报道气单胞菌溶素可区分单个肽的构象差异,为气单胞菌溶素纳米孔电化学这一迅速发展的领域打开了大门。多年来,各种突变的气单胞菌溶素纳米孔不断出现,与先进的仪器和数据分析算法相关联,能够同时鉴定30多个靶标,且数量仍在增加。特别是气单胞菌溶素纳米孔电化学允许进行时间分辨的定性和定量分析,范围从DNA测序、蛋白质组学、酶动力学、单分子反应到潜在的临床诊断。尤其是,气单胞菌溶素纳米孔电化学在动态定量分析中的可行性将彻底改变单分子水平的组学研究,为单分子时间组学这一充满前景的领域铺平道路。尽管到目前为止这种方法取得了成功,但理解受限相互作用如何与可区分的离子特征相关联仍然具有挑战性。最近的尝试在体积排阻模型中添加了校正项,以考虑气单胞菌溶素与分析物之间的受限相互作用导致的纳米孔内离子迁移率变化。因此,在本综述中,我们重新审视气单胞菌溶素纳米孔内靶分子引起的电流阻断的起源。我们通过校正的电导模型强调受限非共价相互作用对气单胞菌溶素纳米孔传感能力的贡献。本综述接着描述了气单胞菌溶素纳米孔内相互作用网络的设计,包括静电、疏水、氢键、阳离子-π和离子-带电氨基酸相互作用,用于超灵敏的生物分子鉴定和定量。最后,我们展望了进一步理解气单胞菌溶素纳米孔内的非共价相互作用网络,并改进对受限电化学的操控和微调以实现广泛实际应用的前景。