Suppr超能文献

一种基于主图像噪声指纹(PRNU)和四元数RGB的双流模型,用于检测伪造人脸。

A dual-stream model based on PRNU and quaternion RGB for detecting fake faces.

作者信息

Hua Mohan, Li Shuangliang, Wang Jinwei

机构信息

Nanjing Foreign Language School, Nanjing, China.

Nanjing University of Information Science and Technology, Nanjing, China.

出版信息

PLoS One. 2025 Jan 28;20(1):e0314041. doi: 10.1371/journal.pone.0314041. eCollection 2025.

Abstract

The forensic examination of AIGC(Artificial Intelligence Generated Content) faces poses a contemporary challenge within the realm of color image forensics. A myriad of artificially generated faces by AIGC encompasses both global and local manipulations. While there has been noteworthy progress in the forensic scrutiny of fake faces, current research primarily focuses on the isolated detection of globally and locally manipulated fake faces, thus lacking a universally effective detection methodology. To address this limitation, we propose a sophisticated forensic model that incorporates a dual-stream framework comprising quaternion RGB and PRNU(Photo Response Non-Uniformity). The PRNU stream extracts the "camera fingerprint" feature by discerning the non-uniform response of the image sensor under varying lighting conditions, thereby encapsulating the overall distribution characteristics of globally manipulated faces. The quaternion RGB stream leverages the inherent nonlinear properties of quaternions and their informative representation capabilities to accurately describe changes in image color, background, and spatial structure, facilitating the meticulous capture of nuanced local distinctions between locally manipulated faces and real faces. Ultimately, we integrate the two streams to establish the exchange of feature information between PRNU and quaternion RGB streams. This strategic integration fully exploits the complementarity between two streams to amalgamate local and global features effectively. Experimental results obtained from diverse datasets underscore the advantages of our method in terms of accuracy, achieving a detection accuracy of 96.81%.

摘要

人工智能生成内容(AIGC)的法医检验在彩色图像取证领域面临着当代挑战。AIGC生成的大量人工合成人脸包含全局和局部操作。虽然在假脸的法医审查方面取得了显著进展,但目前的研究主要集中在对全局和局部操纵的假脸进行孤立检测,因此缺乏一种普遍有效的检测方法。为了解决这一局限性,我们提出了一种复杂的法医模型,该模型采用了一个双流框架,包括四元数RGB和PRNU(光电响应非均匀性)。PRNU流通过识别图像传感器在不同光照条件下的非均匀响应来提取“相机指纹”特征,从而封装全局操纵人脸的整体分布特征。四元数RGB流利用四元数固有的非线性特性及其信息表示能力,准确描述图像颜色、背景和空间结构的变化,便于细致捕捉局部操纵人脸与真实人脸之间细微的局部差异。最终,我们整合这两个流,以建立PRNU和四元数RGB流之间的特征信息交换。这种策略性整合充分利用了两个流之间的互补性,有效地融合了局部和全局特征。从不同数据集获得的实验结果突出了我们方法在准确性方面的优势,检测准确率达到96.81%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d5c8/11774371/1dc22fd96371/pone.0314041.g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验