Suppr超能文献

AttGAN:仅通过改变你想要改变的内容来进行面部属性编辑。

AttGAN: Facial Attribute Editing by Only Changing What You Want.

作者信息

He Zhenliang, Zuo Wangmeng, Kan Meina, Shan Shiguang, Chen Xilin

出版信息

IEEE Trans Image Process. 2019 Nov;28(11):5464-5478. doi: 10.1109/TIP.2019.2916751. Epub 2019 May 20.

Abstract

Facial attribute editing aims to manipulate single or multiple attributes on a given face image, i.e., to generate a new face image with desired attributes while preserving other details. Recently, the generative adversarial net (GAN) and encoder-decoder architecture are usually incorporated to handle this task with promising results. Based on the encoder-decoder architecture, facial attribute editing is achieved by decoding the latent representation of a given face conditioned on the desired attributes. Some existing methods attempt to establish an attribute-independent latent representation for further attribute editing. However, such attribute-independent constraint on the latent representation is excessive because it restricts the capacity of the latent representation and may result in information loss, leading to over-smooth or distorted generation. Instead of imposing constraints on the latent representation, in this work, we propose to apply an attribute classification constraint to the generated image to just guarantee the correct change of desired attributes, i.e., to change what you want. Meanwhile, the reconstruction learning is introduced to preserve attribute-excluding details, in other words, to only change what you want. Besides, the adversarial learning is employed for visually realistic editing. These three components cooperate with each other forming an effective framework for high quality facial attribute editing, referred as AttGAN. Furthermore, the proposed method is extended for attribute style manipulation in an unsupervised manner. Experiments on two wild datasets, CelebA and LFW, show that the proposed method outperforms the state-of-the-art on realistic attribute editing with other facial details well preserved.

摘要

面部属性编辑旨在对给定的面部图像操纵单个或多个属性,即生成具有所需属性的新面部图像,同时保留其他细节。最近,生成对抗网络(GAN)和编码器 - 解码器架构通常被用于处理这项任务并取得了不错的成果。基于编码器 - 解码器架构,面部属性编辑是通过对给定面部的潜在表示进行解码来实现的,解码条件是所需的属性。一些现有方法试图建立一个与属性无关的潜在表示以进行进一步的属性编辑。然而,对潜在表示的这种与属性无关的约束过于严格,因为它限制了潜在表示的能力,可能导致信息丢失,从而导致过度平滑或扭曲的生成。在这项工作中,我们不是对潜在表示施加约束,而是建议对生成的图像应用属性分类约束,以仅保证所需属性的正确变化,即改变你想要改变的东西。同时,引入重建学习以保留排除属性的细节,换句话说,只改变你想要改变的东西。此外,对抗学习用于视觉上逼真的编辑。这三个组件相互协作,形成了一个用于高质量面部属性编辑的有效框架,称为AttGAN。此外,所提出的方法以无监督的方式扩展用于属性风格操纵。在两个野生数据集CelebA和LFW上的实验表明,所提出的方法在逼真的属性编辑方面优于现有技术,同时很好地保留了其他面部细节。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验