Sacli-Bilmez Banu, Bas Abdullah, Erşen Danyeli Ayça, Yakicier M Cengiz, Pamir M Necmettin, Özduman Koray, Dinçer Alp, Ozturk-Isik Esin
Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
Institute of Biomedical Engineering, Bogazici University, Istanbul, Turkey.
Comput Biol Med. 2025 Mar;186:109736. doi: 10.1016/j.compbiomed.2025.109736. Epub 2025 Jan 27.
Preoperative and noninvasive detection of isocitrate dehydrogenase (IDH) and telomerase reverse transcriptase gene promoter (TERTp) mutations in glioma is critical for prognosis and treatment planning. This study aims to develop deep learning classifiers to identify IDH and TERTp mutations using proton magnetic resonance spectroscopy (H-MRS) and a one-dimensional convolutional neural network (1D-CNN) architecture.
This study included H-MRS data from 225 adult patients with hemispheric diffuse glioma (117 IDH mutants and 108 IDH wild-type; 99 TERTp mutants and 100 TERTp wild-type). The spectra were processed using the LCModel, and multiple deep learning models, including a baseline, a deep-shallow network, and an attention deep-shallow network (ADSN), were trained to classify mutational subgroups of gliomas. The Gradient-weighted Class Activation Mapping (Grad-CAM) technique was used to interpret the models' decision-making process.
The ADSN model was the most effective for IDH mutation detection, achieving F1-scores of 93 % on the validation set and 88 % on the test set. For TERTp mutation detection, the ADSN model achieved F1-scores of 80 % in the validation set and 81 % in the test set, whereas TERTp-only gliomas were detected with F1-scores of 88 % in the validation set and 86 % in the test set using the same architecture.
Deep learning models accurately predicted the IDH and TERTp mutational subgroups of hemispheric diffuse gliomas by extracting relevant information from H-MRS spectra without the need for manual feature extraction.
术前对胶质瘤中的异柠檬酸脱氢酶(IDH)和端粒酶逆转录酶基因启动子(TERTp)突变进行无创检测对于预后评估和治疗方案制定至关重要。本研究旨在开发深度学习分类器,利用质子磁共振波谱(H-MRS)和一维卷积神经网络(1D-CNN)架构来识别IDH和TERTp突变。
本研究纳入了225例患有半球弥漫性胶质瘤的成年患者的H-MRS数据(117例IDH突变型和108例IDH野生型;99例TERTp突变型和100例TERTp野生型)。使用LCModel对波谱进行处理,并训练包括基线模型、深浅网络和注意力深浅网络(ADSN)在内的多个深度学习模型,以对胶质瘤的突变亚组进行分类。采用梯度加权类激活映射(Grad-CAM)技术来解释模型的决策过程。
ADSN模型在检测IDH突变方面最为有效,在验证集上的F1分数为93%,在测试集上为88%。对于TERTp突变检测,ADSN模型在验证集中的F1分数为80%,在测试集中为81%,而使用相同架构在验证集中检测仅TERTp突变的胶质瘤时F1分数为88%,在测试集中为86%。
深度学习模型通过从H-MRS波谱中提取相关信息,无需手动特征提取,就能准确预测半球弥漫性胶质瘤的IDH和TERTp突变亚组。