Qu Hong, Hang Lifeng, Diao Yanzhao, Wang Haiying, Fang Laiping, Liu Wangzi, Liu Jinwu, Sun Hui, Wang Jizhuang, Meng Xianwei, Li Hong, Jiang Guihua
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China; College of Chemistry and Materials Science, Jinan University, Guangzhou 510632 China.
The Department of Medical Imaging, Guangzhou Key Laboratory of Molecular Functional Imaging and Artificial Intelligence for Major Brain Diseases, The Affiliated Guangdong Second Provincial General Hospital of Jinan University, Jinan University, Guangzhou 518037 China.
J Colloid Interface Sci. 2025 May;685:912-926. doi: 10.1016/j.jcis.2025.01.202. Epub 2025 Jan 24.
Microwave dynamic therapy (MWDT) destroy tumor cells using reactive oxygen species (ROS), but its effectiveness is limited by low ROS production and intracellular oxygen (O) availability. This study presents a novel strategy using manganese (II) ion (Mn) doped iron (Fe)-based metal-organic framework (Fe MOF) nanoparticles (NPs) to enhance both O generation and ROS production for improved MWDT. Incorporating Mn into Fe MOF narrows the bandgap from 0.673 eV to 0.429 eV, improving the separation of electronic-hole pair and increasing ROS yield. Meanwhile, Mn-porphyrin nanocomplexes facilitate the decomposition of hydrogen peroxide to Oin situ. Additionally, encapsulating the chemotherapeutic drug gemcitabine (GEM) within NPs and surface-modifying with Pluronic F127 creates Mn-Fe MOF@GEM@F127 (MMGF) NPs, which are suitable for photoacoustic/magnetic resonance imaging guidance (relaxivity, r: 2.007 mMs). The microwave (MW)/pH dual responsive GEM release works synergistically with MWDT, thereby more effectively disrupting tumor cells. This strategy differs from monotherapy by using MW sensitizers to enhance O production, which not only increases the efficiency of ROS generation in MWDT but also makes subsequent chemotherapy more effective while reducing the side effects of conventional chemotherapy. This combined treatment reduced HONE-1 cell proliferation and tumor growth by 89.95 % and 96.12 %, respectively. The study proposes a versatile strategy to significantly improve both MWDT and chemotherapy efficacy with potential applications to various cancers.
微波动态疗法(MWDT)利用活性氧(ROS)破坏肿瘤细胞,但其有效性受到低ROS生成量和细胞内氧(O)可用性的限制。本研究提出了一种新策略,即使用锰(II)离子(Mn)掺杂的铁(Fe)基金属有机框架(Fe MOF)纳米颗粒(NPs)来增强O生成和ROS产生,以改善MWDT。将Mn掺入Fe MOF可使带隙从0.673 eV缩小至0.429 eV,改善电子-空穴对的分离并提高ROS产量。同时,锰卟啉纳米复合物促进过氧化氢原位分解为O。此外,将化疗药物吉西他滨(GEM)封装在NPs中并用普朗尼克F127进行表面修饰,可制备出适用于光声/磁共振成像引导的Mn-Fe MOF@GEM@F127(MMGF)NPs(弛豫率,r:2.007 mM s)。微波(MW)/pH双重响应的GEM释放与MWDT协同作用,从而更有效地破坏肿瘤细胞。该策略与使用MW敏化剂增强O生成的单一疗法不同,这不仅提高了MWDT中ROS生成的效率,还使后续化疗更有效,同时减少了传统化疗的副作用。这种联合治疗分别使HONE-1细胞增殖和肿瘤生长降低了89.95%和96.12%。该研究提出了一种通用策略,可显著提高MWDT和化疗疗效,具有在各种癌症中应用的潜力。