Qian Yinnan, Guo Yirun, Yang Zijie, Luo Zhaoyan, Zhang Lei, Zhang Qianling, He Chuanxin, Zhang Hao, Sun Xueliang, Ren Xiangzhong
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, P.R. China.
Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren-ai Road, Suzhou, Jiangsu, 215123, P. R. China.
Angew Chem Int Ed Engl. 2025 Mar 3;64(10):e202419352. doi: 10.1002/anie.202419352. Epub 2025 Feb 7.
Rationally manipulating the in situ formed catalytically active surface of catalysts remains a significant challenge for achieving highly efficient water electrolysis. Herein, we present a bias-induced activation strategy to modulate in situ Ga leaching and trigger the dynamic surface restructuring of lamellar Ir@GaO for the electrochemical oxygen evolution reaction. The in situ reconstructed Ga-O-Ir interface sustains high water oxidation rates at oxygen evolution reaction (OER) overpotentials. We found that OER at the Ga-O-Ir interface follows a bi-nuclear adsorbate evolution mechanism with unsaturated IrO as the active sites, while GaO atoms play an indirect role in promoting water dissociation to form OH* and transferring OH* to Ir sites. This breaks the scaling relationship of the adsorption energies between OH* and OOH*, significantly lowering the energy barrier of the rate-limiting step and greatly increasing reactivity. The Ir@GaO catalyst achieves lower overpotentials, a current density of 2 A cm at 1.76 V, and stable operation up to 1 A cm in scalable proton exchange membrane water electrolyzer (PEMWE) at 1.63 V, maintaining stable operation at 1 A cm over 1000 hours with a degradation rate of 11.5 μV h. This work prompted us to jointly address substrate-catalyst interactions and catalyst reconstruction, an underexplored path, to improve activity and stability in Ir PEMWE anodes.
合理调控催化剂原位形成的催化活性表面对于实现高效水电解仍然是一项重大挑战。在此,我们提出一种偏压诱导活化策略,以调节原位镓浸出并触发层状Ir@GaO的动态表面重构,用于电化学析氧反应。原位重构的Ga-O-Ir界面在析氧反应(OER)过电位下维持高水氧化速率。我们发现,Ga-O-Ir界面处的OER遵循双核吸附质演化机制,以不饱和IrO作为活性位点,而GaO原子在促进水离解形成OH并将OH转移至Ir位点方面起间接作用。这打破了OH和OOH吸附能之间的比例关系,显著降低了限速步骤的能垒并大幅提高了反应活性。Ir@GaO催化剂在可扩展质子交换膜水电解槽(PEMWE)中于1.63 V下实现了更低的过电位、在1.76 V下达到2 A cm的电流密度以及在1 A cm下稳定运行至1 A cm,在1 A cm下保持稳定运行超过1000小时,降解速率为11.5 μV h。这项工作促使我们共同解决底物-催化剂相互作用和催化剂重构这一未充分探索的途径,以提高Ir PEMWE阳极的活性和稳定性。