Gavdush Arsenii A, Zhelnov Vladislav A, Dolganov Kirill B, Bogutskii Alexander A, Garnov Sergey V, Burdanova Maria G, Ponomarev Dmitry S, Shi Qiwu, Zaytsev Kirill I, Komandin Gennadii A
Prokhorov General Physics Institute of the Russian Academy of Sciences, Moscow, 119991, Russia.
Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, Dolgoprudny, 141701, Russia.
Sci Rep. 2025 Jan 28;15(1):3500. doi: 10.1038/s41598-025-87573-9.
Vanadium dioxide ([Formula: see text]) is a favorable material platform of modern optoelectronics, since it manifests the reversible temperature-induced insulator-metal transition (IMT) with an abrupt and rapid changes in the conductivity and optical properties. It makes possible applications of such a phase-change material in the ultra-fast optoelectronics and terahertz (THz) technology. Despite the considerable interest to this material, data on its broadband electrodynamic response in different states are still missing in the literature. This hampers the design and implementation of the [Formula: see text]-based devices. In this paper, we combine the Fourier-transform infrared (FTIR) spectroscopy, THz pulsed spectroscopy (TPS), and four-contact probe method to study the [Formula: see text] films prepared by magnetron sputtering on a c-cut sapphire substrate. Considering different temperatures of a substrate and pressures of atmosphere, we reconstruct complex dielectric permittivity of [Formula: see text] film in the frequency range of 0.2-150 THz, along with its static conductivity. The dielectric response is modeled using Lorentz and Drude kernels, which make possible splitting contributions from vibrational modes and free charge carriers to the total dynamic conductivity. By studying [Formula: see text] at different substrate temperatures and atmosphere pressures, we show that IMT appears to be pressure-dependent, which we attribute to the different thermostatic conditions of a sample. Finally, we estimate somewhat optimal thickness and temperature of the [Formula: see text] film in metallic phase for the THz optoelectronic applications. Our finding should be useful for further developments of the [Formula: see text]-based devices and technologies.
二氧化钒([化学式:见原文])是现代光电子学中一种理想的材料平台,因为它表现出可逆的温度诱导绝缘体-金属转变(IMT),其电导率和光学性质会发生突然且快速的变化。这使得这种相变材料在超快光电子学和太赫兹(THz)技术中具有应用潜力。尽管对这种材料有相当大的研究兴趣,但文献中仍缺少关于其在不同状态下的宽带电动力学响应的数据。这阻碍了基于[化学式:见原文]的器件的设计与实现。在本文中,我们结合傅里叶变换红外(FTIR)光谱、太赫兹脉冲光谱(TPS)和四探针法,研究在c切割蓝宝石衬底上通过磁控溅射制备的[化学式:见原文]薄膜。考虑到衬底的不同温度和大气压力,我们在0.2 - 150 THz频率范围内重构了[化学式:见原文]薄膜的复介电常数及其静态电导率。介电响应使用洛伦兹和德鲁德核进行建模,这使得能够区分振动模式和自由电荷载流子对总动态电导率的贡献。通过研究不同衬底温度和大气压力下的[化学式:见原文],我们表明IMT似乎与压力有关,我们将其归因于样品的不同恒温条件。最后,我们估计了用于太赫兹光电子应用的金属相[化学式:见原文]薄膜的一些最佳厚度和温度。我们的发现对于基于[化学式:见原文]的器件和技术的进一步发展应该是有用的。