Schiller Karl Jakob, Sternemann Lasse, Stupar Matija, Omar Alan, Hoffmann Martin, Nitschke Jonah Elias, Mischke Valentin, Janas David Maximilian, Ponzoni Stefano, Zamborlini Giovanni, Saraceno Clara Jody, Cinchetti Mirko
Department of Physics, TU Dortmund University, Otto-Hahn-Straße 4, 44227, Dortmund, Germany.
Photonics and Ultrafast Laser Science, Ruhr University Bochum, Universitätsstrasse 150, 44801, Bochum, Germany.
Sci Rep. 2025 Jan 29;15(1):3611. doi: 10.1038/s41598-025-86660-1.
Time-resolved momentum microscopy is an emerging technique based on photoelectron spectroscopy for characterizing ultrafast electron dynamics and the out-of-equilibrium electronic structure of materials in the entire Brillouin zone with high efficiency. In this article, we introduce a setup for time-resolved momentum microscopy based on an energy-filtered momentum microscope coupled to a custom-made high-harmonic generation photon source driven by a multi-100 kHz commercial Yb-ultrafast laser that delivers fs pulses in the extreme ultraviolet range. The laser setup includes a nonlinear pulse compression stage employing spectral broadening in a Herriott-type bulk-based multi-pass cell. This element allows flexible tuning of the driving pulse duration, providing a versatile time-resolved momentum microscopy setup featuring two operational modes designed to enhance either the energy or time resolution. We show the capabilities of the system by tracing ultrafast electron dynamics in the conduction band valleys of a bulk crystal of the 2D semiconductor WS. Using uncompressed driving laser pulses, we demonstrate an energy resolution better than (107 ± 2) meV, while compressed pulses lead to a time resolution better than (48.8 ± 17) fs.
时间分辨动量显微镜是一种基于光电子能谱的新兴技术,用于高效表征超快电子动力学以及整个布里渊区中材料的非平衡电子结构。在本文中,我们介绍了一种基于能量过滤动量显微镜的时间分辨动量显微镜装置,该装置与一个定制的高谐波产生光子源耦合,该光子源由一台多100kHz的商用Yb超快激光器驱动,可在极紫外范围内产生飞秒脉冲。激光装置包括一个非线性脉冲压缩阶段,该阶段在基于赫里奥特型体块的多程池中采用光谱展宽。该元件允许灵活调整驱动脉冲持续时间,提供了一种通用的时间分辨动量显微镜装置,具有两种操作模式,旨在提高能量分辨率或时间分辨率。我们通过追踪二维半导体WS体晶体导带谷中的超快电子动力学来展示该系统的能力。使用未压缩的驱动激光脉冲,我们展示了优于(107±2)meV的能量分辨率,而压缩脉冲则导致优于(48.8±17)fs的时间分辨率。