Shaligram Sayali, Shevate Rahul, Paul Siddhartha, Shaffer Devin L
Civil and Environmental Engineering Department, University of Houston, 4226 Martin Luther King Blvd, Houston, Texas 77204, United States.
ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9716-9727. doi: 10.1021/acsami.4c14332. Epub 2025 Jan 28.
The permeability-selectivity trade-off in polymeric desalination membranes limits the efficiency and increases the costs of reverse osmosis and nanofiltration systems. Ultrathin contorted polyamide films with enhanced free volume demonstrate an impressive 8-fold increase in water permeance while maintaining equivalent salt rejection compared to conventional polyamide membranes made with -phenylenediamine and trimesoyl chloride monomers. The solution-based molecular layer-by-layer (mLbL) deposition technique employed for membrane fabrication sequentially reacts a shape-persistent contorted diamine monomer with a trimesoyl chloride monomer, forming highly cross-linked, dense polyamide networks while avoiding the kinetic and mass transfer limitations of traditional interfacial polymerization. The mLbL process allows precise nanoscale control over polyamide selective layer thickness, network structure, and surface roughness. The resulting controlled film thicknesses enable direct measurements of water and NaCl permeabilities. The permselectivities of contorted polyamide membranes surpass those of commercial desalination membranes and approach the reported polyamide upper bound. Solution-diffusion transport modeling indicates that this high permselectivity may be attributed to enhanced water transport pathways in the contorted polyamides that increase water diffusivity-permeability while maintaining high solute rejection through solubility-selectivity.
聚合物脱盐膜中的渗透选择性权衡限制了反渗透和纳滤系统的效率并增加了成本。与由对苯二胺和均苯三甲酰氯单体制备的传统聚酰胺膜相比,具有增加的自由体积的超薄扭曲聚酰胺膜表现出令人印象深刻的8倍水渗透通量增加,同时保持相当的盐截留率。用于膜制备的基于溶液的逐层(mLbL)沉积技术使形状持久的扭曲二胺单体与均苯三甲酰氯单体依次反应,形成高度交联的致密聚酰胺网络,同时避免了传统界面聚合的动力学和传质限制。mLbL工艺允许对聚酰胺选择层的厚度、网络结构和表面粗糙度进行精确的纳米级控制。由此产生的可控膜厚度使得能够直接测量水和NaCl的渗透率。扭曲聚酰胺膜的渗透选择性超过了商业脱盐膜,接近报道的聚酰胺上限。溶液扩散传输模型表明,这种高渗透选择性可能归因于扭曲聚酰胺中增强的水传输途径,其增加了水的扩散率-渗透率,同时通过溶解度选择性保持高溶质截留率。