Fish Lauren A, Ewing Madison D, Rich Kelly A, Xi Chengjie, Chen Isabella, Jaime Diego, Madigan Laura A, Wang Xueyong, Shahtout Justin L, Feder Rita E, Funai Katsuhiko, Christian Jan L, Wharton Kristi A, Rich Mark M, Arnold William D, Fallon Justin R
Neuroscience Graduate Program, Brown University, Providence, Rhode Island 02912
Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, Rhode Island 02912.
J Neurosci. 2025 Apr 9;45(15):e1279232025. doi: 10.1523/JNEUROSCI.1279-23.2025.
The neuromuscular junction (NMJ) is the linchpin of nerve-evoked muscle contraction. Broadly, the NMJ transduces nerve action potentials into muscle fiber action potentials (MFAPs). Efficient neuromuscular transmission requires cholinergic signaling, which generates endplate potentials (EPPs), and excitation, the amplification of an EPP by postsynaptic voltage-gated sodium channels (Nav1.4) to generate the MFAP. Compared to the cholinergic component, the signaling pathways that organize Nav1.4 are poorly characterized. Muscle-specific kinase (MuSK), in addition to its Ig1 domain-dependent role as the main organizer of acetylcholine receptors (AChRs), also binds BMPs via its Ig3 domain and shapes BMP-induced signaling. Using mice lacking the MuSK Ig3 domain ("ΔIg3-MuSK"), we probed the role of this domain at the NMJ. NMJs formed in ΔIg3-MuSK animals with pre- and postsynaptic specializations aligned at all ages examined. However, the ΔIg3-MuSK postsynaptic apparatus was fragmented from an early age. Synaptic electrophysiology showed that spontaneous and nerve-evoked acetylcholine release, AChR density, and endplate currents were comparable at WT and ΔIg3-MuSK NMJs. However, single fiber electromyography revealed that nerve-evoked MFAPs in ΔIg3-MuSK muscle were abnormal, exhibiting jitter and blocking. Nerve-evoked compound muscle action potentials and muscle force were also diminished. Finally, Nav1.4 levels were reduced at ΔIg3-MuSK NMJs, but not extrasynaptically, indicating that the observed excitability defects result from impaired synaptic localization of this ion channel. We propose distinct, domain-specific roles for MuSK at the NMJ: the Ig1 domain mediates agrin-LRP4-mediated AChR localization, while the Ig3 domain maintains postsynaptic Nav1.4 density, conferring the muscle excitability required to amplify cholinergic signals and trigger action potentials.
神经肌肉接头(NMJ)是神经诱发肌肉收缩的关键所在。广义而言,NMJ将神经动作电位转化为肌纤维动作电位(MFAP)。高效的神经肌肉传递需要胆碱能信号传导,其产生终板电位(EPP),以及兴奋过程,即通过突触后电压门控钠通道(Nav1.4)对EPP进行放大以产生MFAP。与胆碱能成分相比,组织Nav1.4的信号通路特征尚不明确。肌肉特异性激酶(MuSK)除了通过其Ig1结构域依赖性作用作为乙酰胆碱受体(AChR)的主要组织者外,还通过其Ig3结构域结合骨形态发生蛋白(BMP)并塑造BMP诱导的信号传导。我们使用缺乏MuSK Ig3结构域的小鼠(“ΔIg3-MuSK”),探究了该结构域在NMJ中的作用。在ΔIg3-MuSK动物中形成的NMJ在所有检测年龄阶段,其突触前和突触后的特化结构均排列整齐。然而,ΔIg3-MuSK的突触后装置从幼年起就出现了碎片化。突触电生理学研究表明,野生型(WT)和ΔIg3-MuSK的NMJ处,自发和神经诱发的乙酰胆碱释放、AChR密度以及终板电流相当。然而,单纤维肌电图显示,ΔIg3-MuSK肌肉中神经诱发的MFAP异常,表现出颤抖和阻滞现象。神经诱发的复合肌肉动作电位和肌肉力量也有所减弱。最后,ΔIg3-MuSK的NMJ处Nav1.4水平降低,但突触外区域未降低,这表明观察到的兴奋性缺陷是由该离子通道的突触定位受损所致。我们提出MuSK在NMJ具有不同的、结构域特异性的作用:Ig1结构域介导聚集蛋白-LRP4介导的AChR定位,而Ig3结构域维持突触后Nav1.4密度,赋予放大胆碱能信号并触发动作电位所需的肌肉兴奋性。