Tiwari Anupriya, Samanta Krishnendu, Devinder Shital, Ahluwalia Balpreet Singh, Joseph Joby
Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India.
Electrical and Computer Engineering, University of Houston, Houston, Texas 77204, United States.
Nano Lett. 2025 Feb 12;25(6):2133-2140. doi: 10.1021/acs.nanolett.4c04799. Epub 2025 Jan 29.
Structured illumination microscopy (SIM) is a robust wide-field optical nanoscopy technique. Several approaches are implemented to improve SIM's resolution capability (∼2-fold). However, achieving a high resolution with a large field of view (FOV) is still challenging. We present tilt-mirror-based multi-periodic SIM for large-FOV super-resolution microscopy. The sample is illuminated by a multi-periodic structured pattern generated by six-beam interference using a custom-designed mirror mount. We achieve 3.16-fold resolution improvement while using a 20×/0.40 numerical-aperture objective that supports a large FOV (0.53 mm × 0.34 mm). This overcomes the high-space-bandwidth product challenge, achieving 9.98-fold improvement. mMP-SIM decouples illumination and collection paths, enabling scalable super-resolution over a large FOV. By using a 28×/0.80 numerical-aperture objective lens, an optical resolution of 170 nm over a 0.40 mm × 0.25 mm imaging area is demonstrated. The proof-of-principle experimental demonstration is performed for both fluorescent beads and a biosample like U2OS (human bone osteosarcoma) cells.
结构光照明显微镜(SIM)是一种强大的宽场光学纳米显微镜技术。人们采用了多种方法来提高SIM的分辨率(约2倍)。然而,在大视场(FOV)下实现高分辨率仍然具有挑战性。我们提出了基于倾斜镜的多周期SIM用于大视场超分辨率显微镜。使用定制设计的镜座通过六束光干涉产生的多周期结构化图案对样品进行照明。在使用支持大视场(0.53毫米×0.34毫米)的20×/0.40数值孔径物镜时,我们实现了3.16倍的分辨率提升。这克服了高空间带宽积的挑战,实现了9.98倍的提升。多周期多平面SIM解耦了照明和采集路径,能够在大视场实现可扩展的超分辨率。通过使用28×/0.80数值孔径物镜,在0.40毫米×0.25毫米的成像区域展示了170纳米的光学分辨率。对荧光珠和U2OS(人骨肉瘤)细胞等生物样品都进行了原理验证实验演示。