Suppr超能文献

影响体外受精新鲜胚胎移植活产率的关键因素:来自聚类集成算法的见解

Critical factors influencing live birth rates in fresh embryo transfer for IVF: insights from cluster ensemble algorithms.

作者信息

Yu Zheng, Zheng Xiaoyan, Sun Jiaqi, Zhang Pengfei, Zhong Ying, Lv Xingyu, Yuan Hongwen, Liang Fanrong, Wang Dexian, Yang Jie

机构信息

School of Intelligent Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

Acupuncture and Tuina School, Chengdu University of Traditional Chinese Medicine, Chengdu, 610075, China.

出版信息

Sci Rep. 2025 Jan 30;15(1):3734. doi: 10.1038/s41598-025-88210-1.

Abstract

Infertility has emerged as a significant global health concern. Assisted reproductive technology (ART) assists numerous infertile couples in conceiving, yet some experience repeated, unsuccessful cycles. This study aims to identify the pivotal clinical factors influencing the success of fresh embryo transfer of in vitro fertilization (IVF). We introduce a novel Non-negative Matrix Factorization (NMF)-based Ensemble algorithm (NMFE). By combining feature matrices from NMF, accelerated multiplicative updates for non-negative matrix factorization (AMU-NMF), and the generalized deep learning clustering (GDLC) algorithm. NMFE exhibits superior accuracy and reliability in analyzing the in vitro fertilization and embryo transfer (IVF-ET) dataset. The dataset comprises 2238 cycles and 85 independent clinical features, categorized into 13 categories based on feature correlation. Subsequently, the NMFE model was trained and reached convergence. Then the features of 13 categories were sequentially masked to analyze their individual effects on IVF-ET live births. The NMFE analysis highlights the significant influence of therapeutic interventions, Embryo transfer outcomes, and ovarian response assessment on live births of IVF-ET. Therapeutic interventions, including ovarian stimulation protocols, ovulation stimulation drugs, and pre-and intra-stimulation cycle acupuncture play prominent roles. However, their impacts on the IVF-ET model are reduced, suggesting a potential synergistic effect when combined. Conversely, factors like basic information, diagnosis, and obstetric history have a lesser influence. The NMFE algorithm demonstrates promising potential in assessing the influence of clinical features on live births in IVF fresh embryo transfer.

摘要

不孕症已成为一个重大的全球健康问题。辅助生殖技术(ART)帮助众多不孕夫妇受孕,但仍有一些夫妇经历反复的、不成功的周期。本研究旨在确定影响体外受精(IVF)新鲜胚胎移植成功率的关键临床因素。我们引入了一种基于非负矩阵分解(NMF)的新型集成算法(NMFE)。通过结合来自NMF的特征矩阵、非负矩阵分解的加速乘法更新(AMU-NMF)和广义深度学习聚类(GDLC)算法。NMFE在分析体外受精和胚胎移植(IVF-ET)数据集时表现出卓越的准确性和可靠性。该数据集包含2238个周期和85个独立的临床特征,根据特征相关性分为13类。随后,对NMFE模型进行训练并达到收敛。然后依次屏蔽13类特征,以分析它们对IVF-ET活产的个体影响。NMFE分析突出了治疗干预、胚胎移植结果和卵巢反应评估对IVF-ET活产的重大影响。治疗干预措施,包括卵巢刺激方案、促排卵药物以及刺激前和刺激周期中的针灸,发挥着重要作用。然而,它们对IVF-ET模型的影响有所降低,表明联合使用时可能存在协同效应。相反,基本信息、诊断和产科病史等因素的影响较小。NMFE算法在评估临床特征对IVF新鲜胚胎移植活产的影响方面显示出有前景的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5249/11779932/6f5c7aebc6f7/41598_2025_88210_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验