Lee Seungmin, Kim Heejung, Kim Ryul, Jin Bora, Kim Seoyeon, Woo Kyung-Ah, Shin Jung Hwan, Jeon Beomseok, Kim Han-Joon, Lee Jee-Young
Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, Seoul, South Korea; Department of Neurology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, South Korea.
Department of Nuclear Medicine, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul, South Korea; Institute of Radiation Medicine, Medical Research Center, Seoul National University, Seoul, South Korea.
Parkinsonism Relat Disord. 2025 Mar;132:107301. doi: 10.1016/j.parkreldis.2025.107301. Epub 2025 Jan 23.
Previous studies have used machine learning to identify clinically relevant atrophic regions in progressive supranuclear palsy (PSP). This study applied Elastic Net (EN) in PSP to uncover key atrophic patterns, offering a novel approach to understanding its pathology.
This study included baseline data from 74 patients with PSP enrolled in the Study of Comprehensive ANd multimodal marker-based cohort of PSP (SCAN-PSP, NCT05579301) in Seoul between January 2022 and August 2023. Participants were evaluated with PSP-rating scale (PSPRS) and Schwab & England Activity of daily living (SEADL). EN regression was used to identify regions with high explanatory power for clinical outcomes, which were combined with clinical parameters to build prediction models. Features selected from EN classification were applied to discriminate between the two groups.
EN identified the third ventricle, right anterior cingulate cortex, and left lateral orbitofrontal cortex as significant features, and multivariate linear regression models incorporating these regions with clinical variables showed high explainability for PSPRS (adjusted R = 0.62) and SEADL (adjusted R = 0.74). The EN-predicted values demonstrated strong correlation with actual scores of PSPRS (r = 0.75, p = 2·10) and SEADL (r = 0.82, p = 2·10). The combined EN-selected features and clinical parameters model robustly distinguished PSP-Richardson from the subcortical types (AUC = 0.94) and those with severe downgaze palsy from without (AUC = 0.90).
This study demonstrated that EN effectively identified significant regional atrophies in PSP, with a modest sample size. Future studies could incorporate multimodal analysis to identify markers for monitoring disease progression.
先前的研究已使用机器学习来识别进行性核上性麻痹(PSP)中具有临床相关性的萎缩区域。本研究在PSP中应用弹性网络(EN)来揭示关键的萎缩模式,为理解其病理学提供了一种新方法。
本研究纳入了2022年1月至2023年8月期间在首尔参加基于综合和多模态标志物的PSP队列研究(SCAN-PSP,NCT05579301)的74例PSP患者的基线数据。参与者接受了PSP评定量表(PSPRS)和施瓦布与英格兰日常生活活动量表(SEADL)评估。使用EN回归来识别对临床结局具有高解释力的区域,将这些区域与临床参数相结合以建立预测模型。从EN分类中选择的特征用于区分两组。
EN确定第三脑室、右侧前扣带回皮质和左侧外侧眶额皮质为显著特征,将这些区域与临床变量纳入的多元线性回归模型对PSPRS(调整后R = 0.62)和SEADL(调整后R = 0.74)具有较高的解释力。EN预测值与PSPRS的实际得分(r = 0.75,p = 2·10)和SEADL的实际得分(r = 0.82,p = 2·10)显示出强烈相关性。结合EN选择的特征和临床参数的模型能够有力地区分PSP-理查森型与皮质下型(曲线下面积[AUC] = 0.94)以及有严重下视麻痹者与无严重下视麻痹者(AUC = 0.90)。
本研究表明,EN在样本量适中的情况下有效地识别了PSP中显著的区域萎缩。未来的研究可以纳入多模态分析以识别监测疾病进展的标志物。