Neururer Florian R, Heim Florian, Baltrun Marc, Boos Philipp, Beerhues Julia, Seidl Michael, Hohloch Stephan
University of Innsbruck, Department of General, Inorganic and Theoretical Chemistry Innrain 80-82 6020 Innsbruck Austria
University of Paderborn, Department of Chemistry Warburger Straße 100 33098 Paderborn Germany.
Inorg Chem Front. 2024 Dec 24;12(6):2224-2235. doi: 10.1039/d4qi02392g. eCollection 2025 Mar 11.
We report the synthesis of dianionic OCO-supported NHC and MIC complexes of molybdenum and tungsten with the general formula (OCO)MO (OCO = bis-phenolate benzimidazolylidene M = Mo (1-Mo), bis-phenolate triazolylidene M = Mo (2-Mo), M = W (2-W) and bis-phenolate imidazolylidene, M = Mo (3-Mo), W (3-W)). These complexes are tested in the catalytic deoxygenation of nitroarenes using pinacol as a sacrificial oxygen atom acceptor/reducing agent to examine the influence of the carbene and the metal centre in this transformation. The results show that the molybdenum-based triazolylidene complex 2-Mo is by far the most active catalyst, and TOFs of up to 270 h are observed, while the tungsten analogues are basically inactive. Mechanistic studies suggest that the superiority of the triazolylidene-based complex 2-Mo is a result of a highly stable metal carbene bond, strongly exceeding the stability of the other NHC complexes 1-Mo and 3-Mo. This is proven by the structural isolation of a triazolylidene pinacolate complex (5-Mo) that can be thermally converted to a μ-oxodimolybdenum(V) complex 7-Mo. The latter complex is very oxophilic and stoichiometrically deoxygenates nitro- and nitrosoarenes at room temperature. In contrast, azoarenes are not reductively cleaved by 7-Mo, suggesting direct deoxygenation of the nitroarenes to the corresponding anilines with nitrosoarenes as intermediates. In summary, this work showcases the superior influence of MIC donors on the catalytic properties of early transition metal complexes.
我们报道了钼和钨的双阴离子OCO支撑的NHC和MIC配合物的合成,其通式为(OCO)MO(OCO = 双酚盐苯并咪唑亚基,M = Mo (1-Mo);双酚盐三唑亚基,M = Mo (2-Mo),M = W (2-W);双酚盐咪唑亚基,M = Mo (3-Mo),W (3-W))。使用频哪醇作为牺牲性氧原子受体/还原剂,对这些配合物在硝基芳烃的催化脱氧反应中进行了测试,以研究卡宾和金属中心在该转化过程中的影响。结果表明,基于钼的三唑亚基配合物2-Mo是迄今为止活性最高的催化剂,观察到的最高TOF可达270 h⁻¹,而钨类似物基本上没有活性。机理研究表明,基于三唑亚基的配合物2-Mo的优越性是由于金属卡宾键高度稳定,大大超过了其他NHC配合物1-Mo和3-Mo的稳定性。这通过三唑亚基频哪醇配合物(5-Mo)的结构分离得到证明,该配合物可热转化为μ-氧代二钼(V)配合物7-Mo。后一种配合物具有很强的亲氧性,在室温下能使硝基芳烃和亚硝基芳烃发生化学计量的脱氧反应。相比之下,偶氮芳烃不会被7-Mo还原裂解,这表明硝基芳烃直接脱氧生成相应的苯胺,亚硝基芳烃为中间体。总之,这项工作展示了MIC供体对早期过渡金属配合物催化性能的卓越影响。