Suppr超能文献

对一种选择性改变DNA结合的病理性GSX2变体进行建模,揭示了小鼠大脑的亚等位基因缺陷。

Modelling a pathological GSX2 variant that selectively alters DNA binding reveals hypomorphic mouse brain defects.

作者信息

Tweedie Laura, Riccetti Matthew R, Cain Brittany, Qin Shenyue, Salomone Joseph, Webb Jordan A, Riesenberg Amy, Ehrman Lisa A, Waclaw Ronald R, Kovall Rhett A, Gebelein Brian, Campbell Kenneth

机构信息

Divisions of Developmental Biology, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, OH 45229, USA.

Medical Scientist Training Program, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA.

出版信息

Dis Model Mech. 2025 Feb 1;18(2). doi: 10.1242/dmm.052110. Epub 2025 Feb 20.

Abstract

Gsx2 is a homeodomain transcription factor critical for development of the ventral telencephalon and hindbrain in mouse. Loss of Gsx2 function results in severe basal ganglia dysgenesis and defects in the nucleus tractus solitarius (nTS) of the hindbrain, together with respiratory failure at birth. De Mori et al. (2019) reported two patients with severe dystonia and basal ganglia dysgenesis that encode distinct recessive GSX2 variants, including a missense variant within the homeodomain (GSX2Q251R). Hence, we modelled the homologous Gsx2 mutation (i.e. Gsx2Q252R) in mouse, and our biochemical analysis revealed that this variant selectively altered DNA binding. Moreover, mice carrying the Gsx2Q252R allele exhibited basal ganglia dysgenesis, albeit to a lesser extent than did Gsx2 null mice. A notable difference between Gsx2Q252R and Gsx2 null mice was that Gsx2Q252R mice survived, and hindbrain analysis revealed relative sparing of the glutamatergic nTS neurons and catecholaminergic A1/C1 and A2/C2 groups. Thus, the Gsx2Q252R variant is a hypomorph that compromises a subset of Gsx2-dependent neuronal subtypes and highlights a critical role for distinct thresholds of catecholaminergic and/or glutamatergic nTS neurons for viability.

摘要

Gsx2是一种同源结构域转录因子,对小鼠腹侧端脑和后脑的发育至关重要。Gsx2功能丧失会导致严重的基底神经节发育不全和后脑孤束核(nTS)缺陷,以及出生时的呼吸衰竭。De Mori等人(2019年)报告了两名患有严重肌张力障碍和基底神经节发育不全的患者,他们编码不同的隐性GSX2变体,包括同源结构域内的一个错义变体(GSX2Q251R)。因此,我们在小鼠中模拟了同源的Gsx2突变(即Gsx2Q252R),我们的生化分析表明,该变体选择性地改变了DNA结合。此外,携带Gsx2Q252R等位基因的小鼠表现出基底神经节发育不全,尽管程度比Gsx2基因敲除小鼠轻。Gsx2Q252R小鼠和Gsx2基因敲除小鼠之间的一个显著差异是,Gsx2Q252R小鼠存活了下来,后脑分析显示谷氨酸能nTS神经元以及儿茶酚胺能A1/C1和A2/C2组相对未受影响。因此,Gsx2Q252R变体是一种亚效等位基因,它损害了一部分依赖Gsx2的神经元亚型,并突出了儿茶酚胺能和/或谷氨酸能nTS神经元的不同阈值对生存能力的关键作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5464/11876842/2596076871a5/dmm-18-052110-g1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验