Suppr超能文献

等离子体驱动合成氮掺杂石墨烯:揭示反应机理和动力学见解。

Plasma-driven synthesis of nitrogen-doped graphene: unveiling the reaction mechanism and kinetic insights.

作者信息

Dong Chuanhao, Li Minglin, Yang Hai, Huang Yanyi, Wu Bo, Hong Ruoyu

机构信息

School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou, 350116, People's Republic of China.

International Joint Laboratory On Intelligent Sensing and Robotics, Fuzhou University, Fuzhou, 350116, People's Republic of China.

出版信息

J Mol Model. 2025 Jan 30;31(2):69. doi: 10.1007/s00894-025-06297-9.

Abstract

CONTEXT

The rotating arc plasma technique for the synthesis of nitrogen-doped graphene capitalizes on the distinctive attributes of plasma, presenting a straightforward, efficient, and catalyst-free strategy for the production of nitrogen-doped graphene. However, experimental outcomes generally fail to elucidate the atomic-level mechanism behind this process. Our research utilizes molecular dynamics simulations to explore theoretically the formation of radicals during the plasma-driven reaction between methane (CH₄) and nitrogen (N₂). The simulations present a complex reaction system comprising nine principal species: CH₄, CH₃, CN, CH₂, HCN, CH, N₂, H₂ and H. Notably, HCN and CN emerge as pivotal precursors for nitrogen doping. Optimal nitrogen concentrations enhance the synthesis of these precursors, whereas excessive nitrogen suppresses the formation of C₂ species, impacting the yield of nitrogen-doped graphene. Conversely, higher methane concentrations stimulate the generation of carbon radicals, augmenting the production of HCN and CN and thus, influencing the properties of the synthesized material. This work is expected to lay a theoretical foundation for the refinement of nitrogen-doped graphene synthesis processes.

METHODS

In this investigation, we employed the LAMMPS software package to explore the formation of free radicals during the methane-nitrogen reaction via molecular dynamics (MD) simulations. These simulations were conducted under an NVT ensemble, maintaining a constant temperature of 3500 K with a time step of 0.1 fs over a duration of 1000 ps. To reduce the variability and enhance the reliability of the simulation outcomes, each simulation was meticulously conducted three times under identical parameters for subsequent statistical analysis.

摘要

背景

用于合成氮掺杂石墨烯的旋转电弧等离子体技术利用了等离子体的独特属性,为氮掺杂石墨烯的生产提供了一种简单、高效且无催化剂的策略。然而,实验结果通常未能阐明该过程背后的原子级机制。我们的研究利用分子动力学模拟从理论上探索甲烷(CH₄)与氮气(N₂)在等离子体驱动反应过程中自由基的形成。模拟结果呈现出一个复杂的反应体系,包含九个主要物种:CH₄、CH₃、CN、CH₂、HCN、CH、N₂、H₂和H。值得注意的是,HCN和CN是氮掺杂的关键前体。最佳氮浓度可提高这些前体的合成,而过量的氮会抑制C₂物种的形成,影响氮掺杂石墨烯的产率。相反,较高的甲烷浓度会刺激碳自由基的产生,增加HCN和CN的生成,从而影响合成材料的性能。这项工作有望为优化氮掺杂石墨烯的合成工艺奠定理论基础。

方法

在本研究中,我们使用LAMMPS软件包通过分子动力学(MD)模拟来探索甲烷 - 氮反应过程中自由基的形成。这些模拟在NVT系综下进行,保持恒定温度为3500 K,时间步长为0.1 fs,持续时间为1000 ps。为了减少变异性并提高模拟结果的可靠性,每个模拟在相同参数下精心进行三次,以便后续进行统计分析。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验