Yin Rongxiu, Li Xin, Ning Yating, Hu Qiang, Mao Yihu, Zhang Xiaoqin, Zhang Xinzhong
Tea Research Institute, Guizhou Provincial Academy of Agricultural Sciences, Guiyang 550006, China.
Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
Sci Total Environ. 2025 Feb 15;965:178597. doi: 10.1016/j.scitotenv.2025.178597. Epub 2025 Jan 29.
Biochar, a widely utilized soil amendment in environmental applications, has been employed to enhance tea cultivation. This study utilized three machine learning models to investigate the effects of biochar on tea growth and yield, with the random forest (RF) model demonstrating superior performance (R = 0.8768, Root Mean Square Error = 6.1537). Feature importance analysis revealed that biochar characteristics and experimental conditions constitute critical factors exerting an impact on the output, accounting for 39.2 % and 38.6 %, respectively. Specifically, the Ca content of biochar (weight 0.274), the quantity of biochar applied (weight 0.206), and the calcium (Ca) content of soil (weight 0.120) emerged as the three most significant factors affecting tea yield. In conclusion, the machine learning models developed in this study elucidate the multifactorial impact of biochar application on tea yield, providing theoretical and methodological support for practical biochar application strategies in tea production.
生物炭是环境应用中广泛使用的土壤改良剂,已被用于促进茶叶种植。本研究利用三种机器学习模型来研究生物炭对茶叶生长和产量的影响,其中随机森林(RF)模型表现出卓越性能(R = 0.8768,均方根误差 = 6.1537)。特征重要性分析表明,生物炭特性和实验条件是影响产量的关键因素,分别占比39.2%和38.6%。具体而言,生物炭的钙含量(权重0.274)、生物炭施用量(权重0.206)和土壤钙(Ca)含量(权重0.120)是影响茶叶产量的三个最重要因素。总之,本研究开发的机器学习模型阐明了生物炭应用对茶叶产量的多因素影响,为茶叶生产中生物炭实际应用策略提供了理论和方法支持。