Suppr超能文献

使用机器学习的前循环卒中血管内治疗临床结局预测模型

Predictive models of clinical outcome of endovascular treatment for anterior circulation stroke using machine learning.

作者信息

Bogey Clement, Rouchaud Aymeric, Gentric Jean-Christophe, Beaufreton Edouard, Timsit Serge, Clarencon Frederic, Caroff Jildaz, Bourcier Romain, Zhu François, Dargazanli Cyril, Hak Jean-François, Boulouis Gregoire, Ifergan Heloise, Pop Raoul, Forestier Geraud, Lapergue Bertrand, Ognard Julien

机构信息

Neuroradiology Department, Limoges University Hospital, Limoges, France.

Limoges University Hospital, Department of radiology, Limoges, France; University of Limoges, Department of radiology, Limoges F-87000, France.

出版信息

J Neurosci Methods. 2025 Apr;416:110376. doi: 10.1016/j.jneumeth.2025.110376. Epub 2025 Jan 28.

Abstract

BACKGROUND AND PURPOSE

Mechanical Thrombectomy (MT) has recently become the standard of care for anterior circulation stroke with large vessel occlusion, but predictive factors of successful MT are still not clearly defined. To tailor treatment individually for each patient, the aim of this study was to evaluate the performances of Machine Learning to predict clinical outcome (mRS) at 3 months after MT.

MATERIAL AND METHODS

From the ETIS French prospective multicenter registry, data from patients who underwent MT for anterior circulation stroke with large vessel occlusion between January 2018 and December 2020 were extracted. Three machine learning models (Support Vector Machine, Random Forest and XGBoost) have been trained with clinical, biological and brain imaging data available in emergency conditions from the cohort of patients treated from 2018 to 2019. Models' performances to predict good outcome (3-months mRS <3) were evaluated on patients treated in 2020. Performances were evaluated with AUC, accuracy, sensitivity and specificity, then ROC curves AUC were compared with the best performing model.

RESULTS

4297 patients were included, 1737 (40 %) with good outcome and 2560 (60 %) with bad outcome were used to train models and 599 patients treated in 2020 were used to evaluate their performances. The best model was obtained with XGBoost: AUC = 0.77, accuracy = 69.3 % but no statistically significant difference existed between models.

CONCLUSION

Our study shows satisfying performances of machine learning to predict clinical outcome after MT using data easily available at initial diagnosis and before the decision to treat.

摘要

背景与目的

机械取栓术(MT)最近已成为前循环大血管闭塞性卒中的标准治疗方法,但MT成功的预测因素仍未明确界定。为了为每位患者量身定制个体化治疗,本研究旨在评估机器学习在预测MT术后3个月临床结局(改良Rankin量表[mRS])方面的性能。

材料与方法

从法国ETIS前瞻性多中心登记处提取了2018年1月至2020年12月期间因前循环大血管闭塞性卒中接受MT治疗的患者数据。使用2018年至2019年治疗队列中急诊时可获得的临床、生物学和脑成像数据对三种机器学习模型(支持向量机、随机森林和XGBoost)进行了训练。在2020年接受治疗的患者中评估模型预测良好结局(3个月mRS<3)的性能。通过曲线下面积(AUC)、准确性、敏感性和特异性评估性能,然后将ROC曲线AUC与表现最佳的模型进行比较。

结果

纳入4297例患者,其中1737例(40%)结局良好,2560例(60%)结局不良用于训练模型,2020年接受治疗的599例患者用于评估其性能。使用XGBoost获得了最佳模型:AUC = 0.77,准确性 = 69.3%,但各模型之间无统计学显著差异。

结论

我们的研究表明,机器学习利用初始诊断时和治疗决策前易于获得的数据预测MT术后临床结局的性能令人满意。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验