Sorondo Sabina M, Fereydooni Arash, Ho Vy T, Dossabhoy Shernaz S, Lee Jason T, Stern Jordan R
Division of Vascular and Endovascular Surgery, Stanford University School of Medicine, Stanford, CA.
Division of Vascular & Endovascular Surgery, Weill Cornell Medicine, New York, NY.
Ann Vasc Surg. 2025 May;114:24-29. doi: 10.1016/j.avsg.2024.12.081. Epub 2025 Jan 28.
Cloud-based, surgical augmented intelligence (Cydar Medical, Cambridge, United Kingdom) can be used for surgical planning and intraoperative imaging guidance during complex endovascular aortic procedures. We aim to evaluate radiation exposure, operative safety metrics, and postoperative renal outcomes following implementation of Cydar imaging guidance using a manually matched cohort of aortic procedures.
We retrospectively reviewed our prospectively maintained database of endovascular aortic cases. Patients repaired using Cydar imaging were matched to patients who underwent a similar procedure without using Cydar. Matching was performed manually on a 1:1 basis using anatomy, device configuration, number of branches/fenestrations, and adjunctive procedures including in-situ laser fenestration. Radiation, contrast use, and other operative metrics were compared. Preoperative and postoperative maximum creatinine was compared to assess for acute kidney injury (AKI) based on risk, injury, failure, loss of kidney function, and end-stage kidney disease (RIFLE) criteria.
Hundred patients from 2012 to 2023 were identified: 50 cases (38 fenestrated endovascular aortic repairs, 2 thoracic endovascular aortic repairs, 3 octopus-type thoracoabdominal aortic aneurysm repair, 7 endovascular aneurysm repairs) where Cydar imaging was used, with suitable matches to 50 non-Cydar cases. Baseline characteristics including body mass index did not differ significantly between the 2 groups (27.8 ± 5.6 vs. 26.7 ± 6.1; P = 0.31). Radiation dose was significantly lower in the Cydar group (2529 ± 2256 vs. 3676 ± 2976 mGy; P < 0.03), despite there being no difference in fluoroscopy time (51 ± 29.4 vs. 58 ± 37.2 min; P = 0.37). Contrast volume (94 ± 37.4 vs. 93 ± 43.9 mL; P = 0.73), estimated blood loss (169 ± 223 vs. 193 ± 222 mL; P = 0.97), and procedure time (154 ± 78 vs. 165 ± 89.1 min) did not differ significantly. Additionally, Cydar versus non-Cydar patients did not show a significant difference between precreatinine and postcreatinine changes (0.13 ± 0.08 vs. 0.05 ± 0.07; P = 0.34). Only one patient in the non-Cydar group met RIFLE criteria for AKI postoperatively.
The use of cloud-based augmented intelligence imaging was associated with a significant reduction in radiation dose in a cohort of matched aortic procedures but did not appear to affect other parameters or renal function. Even with advanced imaging, surgeons should remain conscientious about radiation safety and administration of nephrotoxic contrast agents.
基于云的手术增强智能技术(英国剑桥的Cydar Medical公司)可用于复杂的血管内主动脉手术的手术规划和术中影像引导。我们旨在通过一组手动匹配的主动脉手术病例,评估在实施Cydar影像引导后患者的辐射暴露、手术安全性指标和术后肾脏结局。
我们回顾性分析了前瞻性维护的血管内主动脉病例数据库。将使用Cydar影像进行修复的患者与未使用Cydar进行类似手术的患者进行匹配。使用解剖结构、器械配置、分支/开窗数量以及包括原位激光开窗在内的辅助手术进行1:1手动匹配。比较辐射剂量、造影剂使用情况和其他手术指标。比较术前和术后的最高肌酐水平,根据风险、损伤、衰竭、肾功能丧失和终末期肾病(RIFLE)标准评估急性肾损伤(AKI)。
确定了2012年至2023年期间的100例患者:50例使用了Cydar影像(38例开窗血管内主动脉修复术、2例胸段血管内主动脉修复术、3例章鱼型胸腹主动脉瘤修复术、7例血管内动脉瘤修复术),并与50例未使用Cydar的病例进行了合适匹配。两组患者的基线特征(包括体重指数)无显著差异(27.8±5.6 vs. 26.7±6.1;P = 0.31)。尽管透视时间无差异(51±29.4 vs. 58±37.2分钟;P = 0.37),但Cydar组的辐射剂量显著更低(2529±2256 vs. 3676±2976 mGy;P < 0.03)。造影剂用量(94±37.4 vs. 93±43.9 mL;P = 0.73)、估计失血量(169±223 vs. 193±222 mL;P = 0.97)和手术时间(154±78 vs. 165±89.1分钟)无显著差异。此外,Cydar组与非Cydar组患者术前和术后肌酐变化无显著差异(0.13±0.08 vs. 0.05±0.07;P = 0.34)。非Cydar组仅1例患者术后符合AKI的RIFLE标准。
在一组匹配的主动脉手术中,使用基于云的增强智能影像与辐射剂量显著降低相关,但似乎不影响其他参数或肾功能。即使有先进的影像技术,外科医生仍应认真对待辐射安全和肾毒性造影剂的使用。