Wang Zhuo, McCalla Zachary, Lin Li, Tornichio Dominic, Agyemang Yaw, Bastulli John A, Zhang Xiaochun Susan, Zhu Hao-Jie, Wang Xinwen
Department of Pharmaceutical Sciences, Northeast Ohio Medical University, Rootstown, Ohio.
Department of Surgery, Northeast Ohio Medical University, Rootstown, Ohio.
Drug Metab Dispos. 2025 Jan;53(1):100023. doi: 10.1124/dmd.124.001916. Epub 2024 Nov 23.
Remimazolam (Byfavo, Acacia Pharma), a recent Food and Drug Administration-approved ester-linked benzodiazepine, offers advantages in sedation, such as rapid onset and predictable duration, making it suitable for broad anesthesia applications. Its favorable pharmacological profile is primarily attributed to rapid hydrolysis, the primary metabolism pathway for its deactivation. Thus, understanding remimazolam hydrolysis determinants is essential for optimizing its clinical use. This study aimed to identify the enzyme(s) and tissue(s) responsible for remimazolam hydrolysis and to evaluate the influence of genetic polymorphisms and drug-drug interactions on its hydrolysis in the human liver. An initial incubation study with remimazolam and PBS, human serum, and the S9 fractions of human liver and intestine demonstrated that remimazolam was exclusively hydrolyzed by human liver S9 fractions. Subsequent incubation studies utilizing a carboxylesterase inhibitor (bis(4-nitrophenyl) phosphate), recombinant human carboxylesterase 1 (CES1) and carboxylesterase 2 confirmed that remimazolam is specifically hydrolyzed by CES1 in human liver. Furthermore, in vitro studies with wild-type CES1 and CES1 variants transfected cells revealed that certain genetic polymorphisms significantly impair remimazolam deactivation. Notably, the impact of CES1 G143E was verified using individual human liver samples. Moreover, our evaluation of the drug-drug interactions between remimazolam and several other substrates/inhibitors of CES1-including simvastatin, enalapril, clopidogrel, and sacubitril-found that clopidogrel significantly inhibited remimazolam hydrolysis at clinically relevant concentrations, with CES1 genetic variants potentially influencing the interactions. In summary, CES1 genetic variants and its interacting drugs are crucial factors contributing to interindividual variability in remimazolam hepatic hydrolysis, holding the potential to serve as biomarkers for optimizing remimazolam use. SIGNIFICANCE STATEMENT: This investigation demonstrates that remimazolam is deactivated by carboxylesterase 1 (CES1) in the human liver, with CES1 genetic variants and drug-drug interactions significantly influencing its metabolism. These findings emphasize the need to consider CES1 genetic variability and potential drug-drug interactions in remimazolam use, especially in personalized pharmacotherapy to achieve optimal anesthetic outcomes.
瑞米唑仑(Byfavo,金合欢制药公司)是美国食品药品监督管理局最近批准的一种酯类连接苯二氮䓬类药物,在镇静方面具有优势,如起效迅速和作用持续时间可预测,使其适用于广泛的麻醉应用。其良好的药理学特性主要归因于快速水解,这是其失活的主要代谢途径。因此,了解瑞米唑仑水解的决定因素对于优化其临床应用至关重要。本研究旨在确定负责瑞米唑仑水解的酶和组织,并评估基因多态性和药物相互作用对其在人肝脏中水解的影响。最初用瑞米唑仑与磷酸盐缓冲液、人血清以及人肝脏和肠道的S9组分进行的孵育研究表明,瑞米唑仑仅被人肝脏S9组分水解。随后利用羧酸酯酶抑制剂(双(4-硝基苯基)磷酸酯)、重组人羧酸酯酶1(CES1)和羧酸酯酶2进行的孵育研究证实,瑞米唑仑在人肝脏中被CES1特异性水解。此外,对转染野生型CES1和CES1变体的细胞进行的体外研究表明,某些基因多态性会显著损害瑞米唑仑的失活。值得注意的是,使用个体人肝脏样本验证了CES1 G143E的影响。此外,我们对瑞米唑仑与其他几种CES1底物/抑制剂(包括辛伐他汀、依那普利、氯吡格雷和沙库巴曲)之间的药物相互作用进行评估发现,氯吡格雷在临床相关浓度下显著抑制瑞米唑仑水解,CES1基因变体可能影响这种相互作用。总之,CES1基因变体及其相互作用药物是导致瑞米唑仑肝脏水解个体差异的关键因素,有可能作为优化瑞米唑仑使用的生物标志物。意义声明:本研究表明,瑞米唑仑在人肝脏中被羧酸酯酶1(CES1)失活,CES1基因变体和药物相互作用显著影响其代谢。这些发现强调了在使用瑞米唑仑时需要考虑CES1基因变异性和潜在的药物相互作用,特别是在个性化药物治疗中以实现最佳麻醉效果。