Suppr超能文献

通过与髓鞘少突胶质细胞糖蛋白(一种中枢神经系统特异性蛋白)额外结合来延长抗体在大脑中的半衰期。

Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein.

作者信息

Cuypers Marie-Lynn, Jaspers Tom, Clerckx Jarne, Leekens Simon, Cawthorne Christopher, Bormans Guy, Cleeren Frederik, Geukens Nick, De Strooper Bart, Dewilde Maarten

机构信息

Laboratory for Therapeutic and Diagnostic Antibodies, KU Leuven - University of Leuven, O&N II Herestraat 49 box 820, 3000, Leuven, Belgium.

Laboratory for Radiopharmaceutical Research, KU Leuven - University of Leuven, O&N II Herestraat 49 box 821, 3000, Leuven, Belgium.

出版信息

Fluids Barriers CNS. 2025 Jan 30;22(1):11. doi: 10.1186/s12987-025-00624-1.

Abstract

BACKGROUND

Therapeutic antibodies for the treatment of neurological disease show great potential, but their applications are rather limited due to limited brain exposure. The most well-studied approach to enhance brain influx of protein therapeutics, is receptor-mediated transcytosis (RMT) by targeting nutrient receptors to shuttle protein therapeutics over the blood-brain barrier (BBB) along with their endogenous cargos. While higher brain exposure is achieved with RMT, the timeframe is short due to rather fast brain clearance. Therefore, we aim to increase the brain half-life of antibodies by binding to myelin oligodendrocyte glycoprotein (MOG), a CNS specific protein.

METHODS

Alpaca immunization with mouse/human MOG, and subsequent phage selections and screenings for MOG binding single variable domain antibodies (VHHs) were performed to find mouse/human cross-reactive VHHs. Their ability to increase the brain half-life of antibodies was evaluated in healthy wild-type mice by coupling two different MOG VHHs (low/high affinity) in a mono- and bivalent format to a β-secretase 1 (BACE1) inhibiting antibody or a control (anti-SARS-CoV-2) antibody, fused to an anti-transferrin receptor (TfR) VHH for active transport over the BBB. Brain pharmacokinetics and pharmacodynamics, CNS and peripheral biodistribution, and brain toxicity were evaluated after intravenous administration to balb/c mice.

RESULTS

Additional binding to MOG increases the C and brain half-life of antibodies that are actively shuttled over the BBB. Anti-SARS-CoV-2 antibodies coupled with an anti-TfR VHH and two low affinity anti-MOG VHHs could be detected in brain 49 days after a single intravenous injection, which is a major improvement compared to an anti-SARS-CoV-2 antibody fused to an anti-TfR VHH which cannot be detected in brain anymore one week post treatment. Additional MOG binding of antibodies does not affect peripheral biodistribution but alters brain distribution to white matter localization and less neuronal internalization.

CONCLUSIONS

We have discovered mouse/human/cynomolgus cross-reactive anti-MOG VHHs which have the ability to drastically increase brain exposure of antibodies. Combining MOG and TfR binding leads to distinct PK, biodistribution, and brain exposure, differentiating it from the highly investigated TfR-shuttling. It is the first time such long brain antibody exposure has been demonstrated after one single dose. This new approach of adding a binding moiety for brain specific targets to RMT shuttling antibodies is a huge advancement for the field and paves the way for further research into brain half-life extension.

摘要

背景

用于治疗神经疾病的治疗性抗体显示出巨大潜力,但由于脑内暴露有限,其应用相当受限。增强蛋白质治疗药物脑内摄取的研究最为充分的方法是受体介导的转胞吞作用(RMT),即通过靶向营养受体,使蛋白质治疗药物与其内源性货物一起穿过血脑屏障(BBB)。虽然通过RMT可实现更高的脑内暴露,但由于脑清除速度相当快,作用时间较短。因此,我们旨在通过与髓鞘少突胶质细胞糖蛋白(MOG,一种中枢神经系统特异性蛋白)结合来延长抗体的脑半衰期。

方法

用小鼠/人MOG对羊驼进行免疫,随后进行噬菌体筛选,以寻找与MOG结合的单可变区抗体(VHH),从而找到小鼠/人交叉反应性VHH。通过将两种不同亲和力(低/高)的MOG VHH以单价和二价形式与β-分泌酶1(BACE1)抑制抗体或对照(抗SARS-CoV-2)抗体偶联,并融合抗转铁蛋白受体(TfR)VHH以实现其在BBB上的主动转运,在健康野生型小鼠中评估它们延长抗体脑半衰期的能力。在对balb/c小鼠静脉给药后,评估脑药代动力学和药效学、中枢神经系统和外周生物分布以及脑毒性。

结果

与MOG的额外结合可增加在BBB上主动转运的抗体的C值和脑半衰期。单次静脉注射49天后,在脑中可检测到与抗TfR VHH和两种低亲和力抗MOG VHH偶联的抗SARS-CoV-2抗体,这与治疗一周后在脑中无法检测到的与抗TfR VHH融合的抗SARS-CoV-2抗体相比有了重大改进。抗体与MOG的额外结合不影响外周生物分布,但会改变脑部分布,使其定位于白质且神经元内化减少。

结论

我们发现了小鼠/人/食蟹猴交叉反应性抗MOG VHH,其能够显著增加抗体的脑内暴露。MOG和TfR结合相结合导致了独特的药代动力学、生物分布和脑内暴露,使其有别于深入研究的TfR穿梭作用。这是首次证明单次给药后抗体在脑中的长时间暴露。这种在RMT穿梭抗体上添加脑特异性靶点结合部分的新方法是该领域的一项巨大进步,为进一步研究脑半衰期延长铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2445/11783731/877ab6ee74e6/12987_2025_624_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验