Suppr超能文献

安塔霉素:源自深海的安塔霉素的发现、生物合成、抗病原菌活性及作用机制

Antarmycins: Discovery, Biosynthesis, Anti-pathogenic Bacterial Activity, and Mechanism of Action from Deep-Sea-Derived .

作者信息

Zhou Zhenbin, Yang Jiafan, Ma Junying, Shang Zhuo, Fang Runping, Tian Xinpeng, Li Qinglian, Ju Jianhua

机构信息

CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China.

College of Oceanology, University of Chinese Academy of Sciences, Qingdao 266400, China.

出版信息

JACS Au. 2024 Dec 18;5(1):237-249. doi: 10.1021/jacsau.4c00912. eCollection 2025 Jan 27.

Abstract

The rapid emergence of antimicrobial-resistant pathogenic microbes has accelerated the search for novel therapeutic agents. Here we report the discovery of antarmycin A (), an antibiotic containing a symmetric 16-membered macrodiolide core with two pendant vancosamine moieties, one of which is glucosylated, from deep-sea-derived SCSIO 07407. The biosynthetic gene cluster of was identified on a giant plasmid featuring transferable elements. In-depth biosynthetic investigation enabled us to (i) identify a set of seven genes associated with the product of the vancosamine moiety; (ii) discover two glycosyltransferases dedicated to the transfer of pendant sugars; and (iii) isolate rhamnose-modified antarmycin B () and a deglucosylated derivative antarmycin C () from genetically engineered mutant strains. Antibacterial assays revealed that displays superior antibacterial properties with potent activities against the critical priority pathogens, multidrug-resistant and methicillin-resistant , fast bacterial killing, insusceptibility to antimicrobial resistance, and high efficiency in infection models. Mechanistic investigations revealed that disrupts the bacterial cell membrane through a mechanism involving interactions between the vancosamine moieties and membrane-embedded phosphatidylglycerol/phosphatidylethanolamine. The results provide insights into the biological generation of vancosamine in natural products and demonstrate the potential of as an effective lead to address the growing antimicrobial resistance threats.

摘要

抗菌耐药性致病微生物的迅速出现加速了新型治疗药物的研发。在此,我们报告从深海来源的南海海洋研究所07407菌株中发现了安塔霉素A(),这是一种含有对称16元大环二醇内酯核心且带有两个分支万古糖胺部分的抗生素,其中一个分支被糖基化。安塔霉素A的生物合成基因簇在一个具有可转移元件的巨型质粒上被鉴定出来。深入的生物合成研究使我们能够:(i)鉴定出一组与万古糖胺部分产物相关的七个基因;(ii)发现两种专门负责转移分支糖的糖基转移酶;(iii)从基因工程突变菌株中分离出鼠李糖修饰的安塔霉素B()和去糖基化衍生物安塔霉素C()。抗菌试验表明,安塔霉素A具有卓越的抗菌特性,对关键优先病原体、多重耐药菌和耐甲氧西林菌具有强效活性,能快速杀灭细菌,不易产生抗菌耐药性,且在感染模型中具有高效性。机制研究表明,安塔霉素A通过一种涉及万古糖胺部分与膜嵌入的磷脂酰甘油/磷脂酰乙醇胺之间相互作用的机制破坏细菌细胞膜。这些结果为天然产物中万古糖胺的生物合成提供了见解,并证明了安塔霉素A作为应对日益增长的抗菌耐药性威胁的有效先导化合物的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4b13/11775689/fff07278f744/au4c00912_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验