Ye Zhiping, Han Chuang, Yang Shulin, Wang Yaolin, Wang Ke, Nikiforov Anton, Wang Jiade, Morent Rino, De Geyter Nathalie, Zhang Xuming, Chen Jun, Yan Mi, Li Junhua, Tu Xin, Xie Pengfei
College of Environment, Zhejiang University of Technology, 18 Chaowang Road, Gongshu District, Hangzhou 310014, China.
College of Chemical and Biological Engineering, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
JACS Au. 2024 Nov 23;5(1):111-120. doi: 10.1021/jacsau.4c00826. eCollection 2025 Jan 27.
The total oxidation of -hexane, a hazardous volatile organic compound (VOC) emitted by the pharmaceutical industry, presents a significant environmental challenge due to limited catalyst activity at low temperatures and poor stability at high temperatures. Here, we present a novel approach that overcomes these limitations by employing single-atom Ag/MnO catalysts coupled with nonthermal plasma (NTP). This strategy achieves exceptional performance in -hexane oxidation at low temperatures, demonstrating 96.3% -hexane removal and an energy yield of 74.1 g kW h with negligible byproduct formation (O < 5 ppm, NO < 20 ppm). In situ characterization of the plasma-catalytic system coupled with theoretical calculations revealed a synergistic mechanism for -hexane oxidation. Reactive species generated by the NTP initiate the breakdown of -hexane into smaller fragments. These fragments are then preferentially adsorbed onto the atomic Ag sites due to their favorable energetics, facilitating their subsequent oxidation. The incorporation of single Ag atoms not only enhances the selective adsorption of these NTP-generated intermediates but also accelerates the reaction kinetics. This work demonstrates the potential of single-atom catalysts coupled with NTP for efficient and environmentally friendly removal of VOCs at low temperatures. This approach offers a promising strategy for mitigating industrial air pollution and achieving cleaner air quality.
己烷是制药行业排放的一种有害挥发性有机化合物(VOC),由于其在低温下催化剂活性有限,在高温下稳定性较差,其完全氧化对环境构成了重大挑战。在此,我们提出了一种新颖的方法,通过采用单原子Ag/MnO催化剂与非热等离子体(NTP)相结合来克服这些限制。该策略在低温下的己烷氧化中表现出卓越的性能,己烷去除率达96.3%,能量产率为74.1 g kW h,副产物生成量可忽略不计(O < 5 ppm,NO < 20 ppm)。结合理论计算对等离子体催化系统进行原位表征,揭示了己烷氧化的协同机制。NTP产生的活性物种引发己烷分解为更小的碎片。由于能量有利,这些碎片随后优先吸附在原子Ag位点上,促进其后续氧化。单Ag原子的引入不仅增强了对这些NTP产生的中间体的选择性吸附,还加速了反应动力学。这项工作证明了单原子催化剂与NTP相结合在低温下高效、环保去除VOCs的潜力。这种方法为减轻工业空气污染和实现更清洁的空气质量提供了一种有前景的策略。