Suppr超能文献

用于超声图像中乳腺病变分割的多级感知边界引导网络。

Multilevel perception boundary-guided network for breast lesion segmentation in ultrasound images.

作者信息

Yang Xing, Zhang Jian, Ou Yingfeng, Chen Qijian, Wang Li, Wang Lihui

机构信息

Engineering Research Center of Text Computing & Cognitive Intelligence, Ministry of Education, Key Laboratory of Intelligent Medical Image Analysis and Precise Diagnosis of Guizhou Province, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.

出版信息

Med Phys. 2025 May;52(5):3117-3134. doi: 10.1002/mp.17647. Epub 2025 Jan 30.

Abstract

BACKGROUND

Automatic segmentation of breast tumors from the ultrasound images is essential for the subsequent clinical diagnosis and treatment plan. Although the existing deep learning-based methods have achieved considerable progress in automatic segmentation of breast tumors, their performance on tumors with similar intensity to the normal tissues is still not satisfactory, especially for the tumor boundaries.

PURPOSE

To accurately segment the non-enhanced lesions with more accurate boundaries, a novel multilevel perception boundary-guided network (PBNet) is proposed to segment breast tumors from ultrasound images.

METHODS

PBNet consists of a multilevel global perception module (MGPM) and a boundary guided module (BGM). MGPM models long-range spatial dependencies by fusing both intra- and inter-level semantic information to enhance tumor recognition. In BGM, the tumor boundaries are extracted from the high-level semantic maps using the dilation and erosion effects of max pooling; such boundaries are then used to guide the fusion of low- and high-level features. Additionally, a multi-level boundary-enhanced segmentation (BS) loss is introduced to improve boundary segmentation performance. To evaluate the effectiveness of the proposed method, we compared it with state-of-the-art methods on two datasets, one publicly available datasets BUSI containing 780 images and one in-house dataset containing 995 images. To verify the robustness of each method, a 5-fold cross-validation method was used to train and test the models. Dice score (Dice), Jaccard coefficients (Jac), Hausdorff Distance (HD), Sensitivity (Sen), and specificity(Spe) were used to evaluate the segmentation performance quantitatively. The Wilcoxon test and Benjamini-Hochberg false discovery rate (FDR) multi-comparison correction were then performed to assess whether the proposed method presents statistically significant performance ( ) difference comparing with existing methods. In addition, to comprehensively demonstrate the difference between different methods, the Cohen's d effect size and compound p-value (c-Pvalue) obtained with Fisher's method were also calculated.

RESULTS

On the BUSI dataset, the mean Dice and Sen of PBNet was increased by 0.93% ( ) and 1.42% ( ), respectively, comparing against the corresponding suboptimal methods. On the in-house dataset, PBNet improved Dice, Jac and Spe by approximately 0.86% ( ), 1.42% ( ), and 0.1%, respectively, and reduced HD by 1.7% ( ) compared to the sub-optimal model. Comprehensively, in terms of all the evaluation metics, the performance of the proposed method significantly (c-Pvalue ) outperformed the others but the effect size was smaller than 0.2. Ablation results confirmed that MGPM is effective in distinguishing non-enhanced tumors, while BGM and BS loss are beneficial for refining tumor segmentation contours.

CONCLUSIONS

The proposed PBNet allows us to segment the non-enhanced breast lesions from ultrasound images with more accurate boundaries, which provides a valuable means for the subsequent clinical applications.

摘要

背景

从超声图像中自动分割乳腺肿瘤对于后续的临床诊断和治疗方案至关重要。尽管现有的基于深度学习的方法在乳腺肿瘤自动分割方面取得了显著进展,但其在与正常组织强度相似的肿瘤上的表现仍不尽人意,尤其是在肿瘤边界方面。

目的

为了更准确地分割具有更精确边界的未增强病变,提出了一种新颖的多级感知边界引导网络(PBNet)来从超声图像中分割乳腺肿瘤。

方法

PBNet由一个多级全局感知模块(MGPM)和一个边界引导模块(BGM)组成。MGPM通过融合层内和层间语义信息来建模长距离空间依赖性,以增强肿瘤识别能力。在BGM中,利用最大池化的膨胀和腐蚀效应从高级语义图中提取肿瘤边界;然后使用这些边界来指导低级和高级特征的融合。此外,引入了多级边界增强分割(BS)损失以提高边界分割性能。为了评估所提出方法的有效性,我们在两个数据集上与现有最先进的方法进行了比较,一个是包含780张图像的公开可用数据集BUSI,另一个是包含995张图像的内部数据集。为了验证每种方法的鲁棒性,使用5折交叉验证方法来训练和测试模型。Dice分数(Dice)、Jaccard系数(Jac)、豪斯多夫距离(HD)、灵敏度(Sen)和特异性(Spe)用于定量评估分割性能。然后进行Wilcoxon检验和Benjamini-Hochberg错误发现率(FDR)多重比较校正,以评估所提出的方法与现有方法相比是否具有统计学上显著的性能( )差异。此外,为了全面展示不同方法之间的差异,还计算了通过Fisher方法获得的Cohen's d效应大小和复合p值(c-Pvalue)。

结果

在BUSI数据集上,与相应的次优方法相比,PBNet的平均Dice和Sen分别提高了0.93%( )和1.42%( )。在内部数据集上,与次优模型相比,PBNet分别将Dice、Jac和Spe提高了约0.86%( )、1.42%( )和0.1%,并将HD降低了1.7%( )。综合来看,就所有评估指标而言,所提出方法的性能显著(c-Pvalue )优于其他方法,但效应大小小于0.2。消融结果证实MGPM在区分未增强肿瘤方面是有效的,而BGM和BS损失有利于细化肿瘤分割轮廓。

结论

所提出的PBNet使我们能够从超声图像中以更精确的边界分割未增强的乳腺病变,这为后续的临床应用提供了一种有价值的手段。

相似文献

本文引用的文献

8
STAN: SMALL TUMOR-AWARE NETWORK FOR BREAST ULTRASOUND IMAGE SEGMENTATION.STAN:用于乳腺超声图像分割的小型肿瘤感知网络。
Proc IEEE Int Symp Biomed Imaging. 2020 Apr;2020:1469-1473. doi: 10.1109/isbi45749.2020.9098691. Epub 2020 May 22.
9
Multiscale superpixel method for segmentation of breast ultrasound.用于乳腺超声分割的多尺度超像素方法
Comput Biol Med. 2020 Oct;125:103879. doi: 10.1016/j.compbiomed.2020.103879. Epub 2020 Jul 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验