Suppr超能文献

Novel inhibition of proteoglycan synthesis and exocytosis by diethylcarbamazine in the Swarm rat chondrocyte.

作者信息

Stevens R L, Parsons W G, Austen K F, Hein A, Caulfield J P

出版信息

J Biol Chem. 1985 May 10;260(9):5777-86.

PMID:3988772
Abstract

Pretreatment of cultured chondrosarcoma chondrocytes at 37 degrees C for 15 min with 15 mM diethylcarbamazine (DEC) followed by a 60-min pulse with [35S] sulfate in the presence of DEC resulted in an approximate 40% inhibition of synthesis and a 75% inhibition of secretion of 35S-proteoglycan. The inhibition was dose-related and was not due to a decrease in protein synthesis. Chondrocytes exposed for 75 min to 15 mM DEC, washed, incubated for 17 h in DEC-free medium, and then pulsed with [35S]sulfate showed no inhibition in the rate of synthesis of proteoglycan or in the per cent of radiolabeled proteoglycans exocytosed into the culture medium, indicating full reversibility of the inhibitory effect. When chondrocytes were incubated for 75 min with both 1 mM beta-D-xyloside and 15 mM DEC, secretion of beta-D-xyloside-bound 35S-glycosaminoglycan was inhibited by more than 70% despite an approximate 3-fold increase in intracellular 35S-macromolecules, as compared to cells exposed to beta-D-xyloside alone. Upon removal of DEC, the block in the secretion of beta-D-xyloside-bound 35S-glycosaminoglycans was reversed, although there was a 15-30-min lag in the initiation of exocytosis. Light and electron microscopic examination of chondrocytes after 75 min of incubation with 15 mM DEC revealed large vacuoles, a distended Golgi apparatus, and a distended endoplasmic reticulum which contained electron dense material. Upon removal of DEC, the vacuoles disappeared and distended organelles returned to their normal appearance between 15 and 30 min, coincident with the start of exocytosis of 35S-proteoglycan and beta-D-xyloside-bound 35S-glycosaminoglycan. These biochemical and morphological studies indicate that DEC treatment of chondrosarcoma chondrocytes alters the transport of molecules from the endoplasmic reticulum to the Golgi and the transport of molecules from the Golgi to the cell surface.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验