Han Sanghun, Jeong Woo Hyeon, Seo Gayoung, Choi Seongmin, Lee Dong Gyu, Chae Weon-Sik, Ahn Hyungju, Lee Tae Kyung, Choi Hyosung, Choi Jongmin, Lee Bo Ram, Kim Younghoon
Department of Energy Science and Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
Adv Mater. 2025 Jun;37(25):e2410128. doi: 10.1002/adma.202410128. Epub 2025 Jan 29.
In terms of surface passivation for realizing efficient CsPbI-perovskite quantum dot (CsPbI-PQD)-based optoelectronic devices, phenethylammonium iodide (PEAI) is widely used during the ligand exchange. However, the PEA cation, due to its large ionic radius incompatible with the 3D perovskite framework, acts as an organic spacer within polycrystalline perovskites, leading to the formation of reduced dimensional perovskites (RDPs). Despite sharing the identical 3D perovskite framework, the influence of PEAI on the structure of CsPbI-PQDs remains unexplored. Here, it is revealed that PEAI can induce the formation of high-n RDPs (n > 2) within the CsPbI-PQD solids, but these high-n RDPs undergo an undesirable phase transition to low-n RDPs, leading to the structural and optical degradation of CsPbI-PQDs. To address the PEAI-induced issue, we employ triphenylphosphine oxide (TPPO) as an ancillary ligand during the ligand exchange process. The incorporation of TPPO prevents HO penetration and regulates the rapid diffusion of PEAI, suppressing the formation of low-n RDPs. Moreover, TPPO can passivate the uncoordinated Pb sites, reducing the nonradiative recombination. This hybrid-ligand exchange strategy using both PEAI and TPPO enables realizing efficient and stable CsPbI-PQD-based light-emitting diode (external quantum efficiency of 21.8%) and solar cell (power conversion efficiency of 15.3%) devices.
在实现高效的基于铯铅碘钙钛矿量子点(CsPbI-PQD)的光电器件的表面钝化方面,碘化苯乙铵(PEAI)在配体交换过程中被广泛使用。然而,PEA阳离子由于其较大的离子半径与三维钙钛矿框架不相容,在多晶钙钛矿中充当有机间隔物,导致形成低维钙钛矿(RDP)。尽管共享相同的三维钙钛矿框架,但PEAI对CsPbI-PQDs结构的影响仍未得到探索。在此,研究发现PEAI可在CsPbI-PQD固体中诱导形成高n值的RDP(n>2),但这些高n值的RDP会发生不良的相转变为低n值的RDP,导致CsPbI-PQDs的结构和光学性能退化。为了解决PEAI引起的问题,我们在配体交换过程中采用三苯基氧化膦(TPPO)作为辅助配体。TPPO的加入可防止羟基渗透并调节PEAI的快速扩散,抑制低n值RDP的形成。此外,TPPO可钝化未配位的铅位点,减少非辐射复合。这种同时使用PEAI和TPPO的混合配体交换策略能够实现高效且稳定的基于CsPbI-PQD的发光二极管(外量子效率为21.8%)和太阳能电池(功率转换效率为15.3%)器件。