Yang Fan, Fang Haisheng, Guo Erqin, Xiao Chengyi, Lu Ziheng, Wang Yuwen, Fan Haiyun, Zhang Andong, Lai Wenbin, Li Weiwei
Beijing Advanced Innovation Center for Soft Matter Science and Engineering & State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029.
College of Textiles and Clothing State Key Laboratory of Bio-fibers and Eco-textiles, Qingdao University, Qingdao, 266071, P.R. China.
Angew Chem Int Ed Engl. 2025 Apr 7;64(15):e202501302. doi: 10.1002/anie.202501302. Epub 2025 Feb 7.
A novel series of alkynyl-linked oligomerized electron acceptors have been synthesized via Sonogashira coupling. The alkynyl linkages can enhance molecular planarity and aggregation, suppress electron-phonon coupling, and reduce non-radiative losses. Binary organic solar cells (OSCs) achieved an efficiency of 17.90%, with a non-radiative loss of 0.185 eV, while ternary OSCs reached a remarkable efficiency of 19.52%. Oligomerized electron acceptors, featuring molecular weights akin to polymers and well-defined chemical structures, have emerged as promising candidates for organic solar cells (OSCs) due to their consistent batch-to-batch reproducibility and improved thermal stability. In this study, we developed a series of oligomerized electron acceptors incorporating alkynyl linkages via an efficient Sonogashira coupling reaction between alkyne-substituted Y-type precursors and multi-substituted iodobenzenes. This method produced monomeric (S-Alkyne-YF), dimeric (D-Alkyne-YF), and trimeric (T-Alkyne-YF) configurations, enabling systematic control over molecular size and substituent arms. The alkynyl linkages, characterized by high bond strength and planar geometry, enhanced molecular planarity and aggregation in films, thus facilitating precise control over morphology and phase separation in the photoactive layers. Notably, the inclusion of these linkages effectively suppressed electron-phonon coupling, resulting in reduced non-radiative energy losses and elevated photocarrier lifetime. OSCs based on PM6:T-Alkyne-YF achieved a power conversion efficiency of 17.90%, a low non-radiative energy loss of 0.185 eV, and an open-circuit voltage of 0.943 V. Furthermore, integrating T-Alkyne-YF into the D18:N3 blend yielded an exceptional PCE of 19.52%. These results underscore the potential of alkynyl-linked oligomerized acceptors in advancing highly efficient and stable OSCs, offering a viable pathway for reducing electron-phonon coupling and enhancing device performance.
通过Sonogashira偶联反应合成了一系列新型的炔基连接的低聚电子受体。炔基连接可以增强分子平面性和聚集性,抑制电子-声子耦合,并减少非辐射损失。二元有机太阳能电池(OSC)的效率达到了17.90%,非辐射损失为0.185 eV,而三元OSC的效率则达到了显著的19.52%。低聚电子受体的分子量与聚合物相近,化学结构明确,由于其批次间的一致性和热稳定性的提高,已成为有机太阳能电池(OSC)的有前途的候选材料。在本研究中,我们通过炔基取代的Y型前体与多取代碘苯之间的高效Sonogashira偶联反应,开发了一系列包含炔基连接的低聚电子受体。该方法产生了单体(S-炔基-YF)、二聚体(D-炔基-YF)和三聚体(T-炔基-YF)构型,能够系统地控制分子大小和取代臂。炔基连接具有高键强度和平面几何结构,增强了薄膜中的分子平面性和聚集性,从而便于对光活性层中的形态和相分离进行精确控制。值得注意的是,这些连接的加入有效地抑制了电子-声子耦合,导致非辐射能量损失减少,光载流子寿命延长。基于PM6:T-炔基-YF的OSC实现了17.90%的功率转换效率、0.185 eV的低非辐射能量损失和0.943 V的开路电压。此外,将T-炔基-YF整合到D18:N3共混物中,得到了19.52%的优异功率转换效率。这些结果强调了炔基连接的低聚受体在推进高效稳定OSC方面的潜力,为减少电子-声子耦合和提高器件性能提供了一条可行的途径。