Suppr超能文献

用于可持续电子产品的柔性可拉伸 Vitrimers 材料。

Flexible and Stretchable Vitrimers for Sustainable Electronics.

作者信息

Biswal Agni K, Hong Peter, Zhang Zhihan, Zheng Yiwen, Gupta Surabhit, Nepal Dhriti, Iyer Vikram, Vashisth Aniruddh

机构信息

Mechanical Engineering, University of Washington, Seattle, Washington 98195, United States.

Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.

出版信息

ACS Appl Mater Interfaces. 2025 Feb 12;17(6):9736-9747. doi: 10.1021/acsami.4c16995. Epub 2025 Jan 31.

Abstract

The rapid increase in electronic waste (e-waste) necessitates sustainable materials that combine functionality with recyclability. Here, we introduce a novel approach for creating flexible vitrimers─reprocessable polymers with dynamic covalent bonds─for use in electronic applications, such as wiring and connectors. By extending polymer chains and employing transesterification reaction, we develop vitrimers that exhibit tunable viscoelastic properties, high stretchability (over 250% tensile strain), and enhanced toughness (up to 466 J/m). Our vitrimers demonstrate a topological freezing temperature () of 185-248 °C, adjustable through catalyst concentration and chain length. The materials are synthesized by using a two-step process involving widely available industrial chemicals. Molecular dynamics simulations provide insight into how chain extension and network topology affect viscoelasticity, supporting the experimental findings. Using transesterification, covalent bonding between flexible and rigid vitrimers can be achieved. We prototype a functional USB cable that successfully transfers power and data, showcases repairability, and is recyclable through a solvent-based process. These results highlight the potential of flexible vitrimers in reducing e-waste and advancing sustainable electronic manufacturing.

摘要

电子垃圾(电子废弃物)的迅速增加使得有必要开发兼具功能性和可回收性的可持续材料。在此,我们介绍一种用于制造柔性玻璃态物质(具有动态共价键的可再加工聚合物)的新方法,该方法用于电子应用,如布线和连接器。通过延长聚合物链并采用酯交换反应,我们开发出了具有可调粘弹性、高拉伸性(拉伸应变超过250%)和增强韧性(高达466 J/m)的玻璃态物质。我们的玻璃态物质表现出185 - 248 °C的拓扑冻结温度(),可通过催化剂浓度和链长进行调节。这些材料通过两步法合成,所用的是广泛可得的工业化学品。分子动力学模拟深入了解了链延长和网络拓扑结构如何影响粘弹性,支持了实验结果。通过酯交换反应,可以实现柔性和刚性玻璃态物质之间的共价键合。我们制作了一个功能性USB电缆原型,它成功地传输了电力和数据,展示了可修复性,并且可以通过基于溶剂的工艺进行回收。这些结果突出了柔性玻璃态物质在减少电子垃圾和推动可持续电子制造方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验