Suppr超能文献

MR imaging of venous and arterial flow by a selective saturation-recovery spin echo (SSRSE) method.

作者信息

Wehrli F W, Shimakawa A, MacFall J R, Axel L, Perman W

出版信息

J Comput Assist Tomogr. 1985 May-Jun;9(3):537-45. doi: 10.1097/00004728-198505000-00024.

Abstract

Flow velocity imaging studies have been conducted by means of a selective saturation-recovery spin echo technique, and the dependence of signal amplitude on interpulse interval, echo delay, slice-selection gradient, and flow velocity was evaluated experimentally. The simple theory predicting a steady increase of signal intensity with increasing interpulse interval until this latter equals the transit time could be verified in phantoms and was shown to permit measurement of blood flow velocity in venous structures such as the femoral vein. The flow phantom experiments further showed that the final intensity, attained when inversion time (TI) = transit time, decreases with increasing flow velocity, an effect that cannot be explained by influx of spins between the 90 degree detection pulse and the 180 degree refocusing pulse. This signal reduction is due to slice-selection gradient-induced phase shifts across the pixel, caused by the intralumenal velocity gradient, leading to destructive interference of the spin isochromats. The velocity distribution can be mapped by plotting signal intensity as a function of interpulse interval for pixels in different radial positions. To highlight arterial flow, gating is required with the acquisition delay selected such that the interpulse period TI falls in a time zone of slow flow within the cardiac cycle. By subtracting images recorded with different acquisition delays, flow images showing arterial enhancement only can be obtained, as illustrated for the femoral artery in the thigh.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验