Luo Dan, Ma Juanjuan, Xie Weile, Wang Zhe
Shanghai Key Laboratory of Veterinary Biotechnology, Department of animal science, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
FEMS Microbiol Lett. 2025 Jan 10;372. doi: 10.1093/femsle/fnaf011.
Understanding bacterial responses to antibiotics is essential for identifying resistance mechanisms and developing novel therapies. This study evaluated the resistance of Staphylococcus aureus (S. aureus) to fusidic acid (FD) in 100 patients with skin and soft tissue infections (SSTIs), revealing susceptibility to FD despite resistance to other antibiotics. Through adaptive laboratory evolution, we developed a highly FD-resistant strain, E10, and identified three gene mutations (fusA, BPENGOFF-00211, and rplF) using whole-genome sequencing. The fusA mutation was the primary contributor to resistance. Furthermore, the evolved fusA mutant strain (H457Y) displayed impaired coagulation function and reduced growth rates. We also analyzed the metabolomic profiles of ancestral ATCC 25923 and evolved E10 strains, both treated and untreated with FD, revealing that the fusA gene can independently induce metabolic reprogramming. These changes primarily impacted pathways involved in central carbon metabolism, nucleotide metabolism, and amino acid synthesis. This study highlights the complexity of FD resistance in S. aureus and offers insights into the metabolic pathways associated with antibiotic resistance.
了解细菌对抗生素的反应对于确定耐药机制和开发新疗法至关重要。本研究评估了100例皮肤和软组织感染(SSTI)患者中金黄色葡萄球菌(S. aureus)对夫西地酸(FD)的耐药性,结果显示尽管对其他抗生素耐药,但对FD仍敏感。通过适应性实验室进化,我们构建了一株高度耐FD的菌株E10,并使用全基因组测序鉴定了三个基因突变(fusA、BPENGOFF-00211和rplF)。fusA突变是耐药的主要原因。此外,进化后的fusA突变菌株(H457Y)表现出凝血功能受损和生长速率降低。我们还分析了未用和用过FD处理的亲本ATCC 25923菌株和进化后的E10菌株的代谢组学谱,结果表明fusA基因可独立诱导代谢重编程。这些变化主要影响参与中心碳代谢、核苷酸代谢和氨基酸合成的途径。本研究突出了金黄色葡萄球菌对FD耐药的复杂性,并为与抗生素耐药性相关的代谢途径提供了见解。