Urzúa Lehuedé Tomás, Berdion Gabarain Victoria, Ibeas Miguel Angel, Salinas-Grenet Hernán, Achá-Escobar Romina, Moyano Tomás C, Ferrero Lucia, Núñez-Lillo Gerardo, Pérez-Díaz Jorge, Perotti María Florencia, Miguel Virginia Natali, Spies Fiorella Paola, Rosas Miguel A, Kawamura Ayako, Rodríguez-García Diana R, Kim Ah-Ram, Nolan Trevor, Moreno Adrian A, Sugimoto Keiko, Perrimon Norbert, Sanguinet Karen A, Meneses Claudio, Chan Raquel L, Ariel Federico, Alvarez Jose M, Estevez José M
Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Santiago, 8370186, Chile.
ANID - Millennium Science Initiative Program - Millennium Nucleus for the Development of Super Adaptable Plants (MN-SAP), Santiago, 8331150, Chile.
New Phytol. 2025 Mar;245(6):2645-2664. doi: 10.1111/nph.20406. Epub 2025 Feb 1.
Root hair (RH) cells can elongate to several hundred times their initial size, and are an ideal model system for investigating cell size control. Their development is influenced by both endogenous and external signals, which are combined to form an integrative response. Surprisingly, a low-temperature condition of 10°C causes increased RH growth in Arabidopsis and in several monocots, even when the development of the rest of the plant is halted. Previously, we demonstrated a strong correlation between RH growth response and a significant decrease in nutrient availability in the growth medium under low-temperature conditions. However, the molecular basis responsible for receiving and transmitting signals related to the availability of nutrients in the soil, and their relation to plant development, remain largely unknown. We have discovered two antagonic gene regulatory networks (GRNs) controlling RH early transcriptome responses to low temperature. One GNR enhances RH growth and it is commanded by the transcription factors (TFs) ROOT HAIR DEFECTIVE 6 (RHD6), HAIR DEFECTIVE 6-LIKE 2 and 4 (RSL2-RSL4) and a member of the homeodomain leucine zipper (HD-Zip I) group I 16 (AtHB16). On the other hand, a second GRN was identified as a negative regulator of RH growth at low temperature and it is composed by the trihelix TF GT2-LIKE1 (GTL1) and the associated DF1, a previously unidentified MYB-like TF (AT2G01060) and several members of HD-Zip I group (AtHB3, AtHB13, AtHB20, AtHB23). Functional analysis of both GRNs highlights a complex regulation of RH growth response to low temperature, and more importantly, these discoveries enhance our comprehension of how plants synchronize RH growth in response to variations in temperature at the cellular level.
根毛(RH)细胞可伸长至其初始大小的数百倍,是研究细胞大小控制的理想模型系统。它们的发育受内源性和外源性信号的影响,这些信号相互结合形成综合反应。令人惊讶的是,即使植物其他部分的发育停止,10°C的低温条件也会导致拟南芥和几种单子叶植物中根毛生长增加。此前,我们证明了根毛生长反应与低温条件下生长培养基中养分可用性的显著降低之间存在强烈相关性。然而,负责接收和传递与土壤中养分可用性相关信号的分子基础及其与植物发育的关系,在很大程度上仍然未知。我们发现了两个相互拮抗的基因调控网络(GRN),它们控制根毛对低温的早期转录组反应。一个基因调控网络增强根毛生长,它由转录因子(TF)根毛缺陷6(RHD6)、类毛缺陷6-2和4(RSL2-RSL4)以及同源结构域亮氨酸拉链(HD-Zip I)I组16(AtHB16)的一员所调控。另一方面,第二个基因调控网络被确定为低温下根毛生长的负调控因子,它由三螺旋转录因子GT2-LIKE1(GTL1)和相关的DF1、一个先前未鉴定的MYB样转录因子(AT2G01060)以及HD-Zip I组的几个成员(AtHB3、AtHB13、AtHB20、AtHB23)组成。对这两个基因调控网络的功能分析突出了根毛对低温生长反应的复杂调控,更重要的是,这些发现增强了我们对植物如何在细胞水平上响应温度变化同步根毛生长的理解。