Suppr超能文献

用于单片钙钛矿/钙钛矿/晶体硅三结串联太阳能电池的多功能界面工程

Multi-Functional Interface Engineering for Monolithic Perovskite/Perovskite/Crystalline Silicon Triple-Junction Tandem Solar Cells.

作者信息

Shao Yufei, Wang Shulin, Luo Tian, Xu Chang, Liu Jieqiong, Liu Lu, Dong XinRui, Wang Hanying, Wang Kai, Liu Shengzhong

机构信息

Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Engineering Lab for Advanced Energy Technology, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710119, China.

Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Center of Materials Science and Optoelectronics Engineering, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.

出版信息

ChemSusChem. 2025 Jun 2;18(11):e202402680. doi: 10.1002/cssc.202402680. Epub 2025 Feb 18.

Abstract

Perovskite/perovskite/silicon triple-junction tandem solar cells (TSCs) hold significant potential for achieving higher efficiencies while lowering the levelized cost of electricity. The top subcell utilizing wide-bandgap (WBG) perovskite is crucial for improving the efficiency of TSCs. However, the defects caused by poorly crystallized WBG perovskite films and suboptimal energy level alignment lead to significant energy loss. Herein, we present a multifunctional interface engineering utilizing piperazinium bromide (PZBr) for enhancing the property of 2.03 eV perovskite films. The unique molecular structure of PZBr enables it to effectively passivate defects in perovskite films, to suppress photoinduced phase segregation, and to improve the energy band alignment between perovskite films and contact layers. Additionally, the PZBr modification facilitates the crystal ripening process in perovskite polycrystalline films. These functions result in suppressed non-radiative recombination and accelerated carrier extraction. Consequently, single-junction 2.03 eV perovskite solar cells (PSCs) achieved a remarkable efficiency of 13.82 %. In further, a monolithic triple-junction TSC was fabricated, achieving a photovoltage of 2.96 V and a champion efficiency of 20.05 % (aperture area: 1 cm). This work underscores the critical role of PZBr-based interface engineering in advancing WBG PSCs and triple-junction TSCs.

摘要

钙钛矿/钙钛矿/硅三结串联太阳能电池(TSCs)在提高效率的同时降低平准化度电成本方面具有巨大潜力。利用宽带隙(WBG)钙钛矿的顶部子电池对于提高TSCs的效率至关重要。然而,结晶不良的WBG钙钛矿薄膜和次优的能级对准所导致的缺陷会造成显著的能量损失。在此,我们提出一种利用溴化哌嗪鎓(PZBr)的多功能界面工程,以增强2.03 eV钙钛矿薄膜的性能。PZBr独特的分子结构使其能够有效钝化钙钛矿薄膜中的缺陷,抑制光致相分离,并改善钙钛矿薄膜与接触层之间的能带对准。此外,PZBr改性促进了钙钛矿多晶薄膜中的晶体成熟过程。这些作用导致非辐射复合受到抑制,载流子提取加速。因此,单结2.03 eV钙钛矿太阳能电池(PSCs)实现了13.82%的显著效率。进一步地,制备了单片三结TSC,实现了2.96 V的光电压和20.05%的最佳效率(孔径面积:1 cm)。这项工作强调了基于PZBr的界面工程在推进WBG PSCs和三结TSCs方面的关键作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验