Schmidt Louis, Garscha Ulrike
Department of Pharmaceutical/Medicinal Chemistry, Institute of Pharmacy, Greifswald University, 17489, Greifswald, Germany.
Anal Bioanal Chem. 2025 Apr;417(9):1807-1818. doi: 10.1007/s00216-025-05759-6. Epub 2025 Feb 1.
Oxylipins are diverse bioactive signaling molecules, which occur in very low concentrations in complex matrices, posing challenges in achieving consistent and sensitive analysis. UHPLC-MS/MS is the preferred technique to separate and quantify these molecules, often optimized using a time-consuming trial-and-error approach. In this study, we applied the design of experiments (DoE) approach to systematically investigate the ionization properties of multiple oxylipin species. Fractional factorial and central composite designs were employed to detect relevant instrument parameters and optimize signal intensity in ESI-MS/MS analysis. Response surface modeling revealed distinct ionization and fragmentation behaviors between polar and apolar oxylipins, driven by their responses to interface temperature and collision-induced dissociation (CID) gas pressure. Particularly, prostaglandins and lipoxins benefit from higher CID gas pressure and lower temperatures compared to the lipophilic HODEs and HETEs to achieve optimal intensity in multiple reaction monitoring analysis. While global source parameters were optimized, analyte-specific entrance/exit potentials and collision energies required individual adjustments. The final method was applied to analyze seven oxylipin classes including leukotrienes, prostaglandins, lipoxins, resolvins, HETEs, HODE, and HoTrEs. Although improvements in lower limits of quantification were modest (< 1 pg on-column), signal-to-noise ratios increased two-fold for lipoxins and resolvins and three- to four-fold for leukotrienes and HETEs, enhancing detection at trace levels. This DoE-guided strategy provides a powerful tool to improve UHPLC-MS/MS analysis of oxylipins across various instrument vendors, guiding the way towards inter-laboratory comparability.
氧化脂质是多种生物活性信号分子,它们在复杂基质中的浓度极低,这给实现一致且灵敏的分析带来了挑战。超高效液相色谱-串联质谱法(UHPLC-MS/MS)是分离和定量这些分子的首选技术,通常采用耗时的试错法进行优化。在本研究中,我们应用实验设计(DoE)方法系统地研究了多种氧化脂质种类的电离特性。采用分数因子设计和中心复合设计来检测相关仪器参数,并优化电喷雾电离串联质谱(ESI-MS/MS)分析中的信号强度。响应面建模揭示了极性和非极性氧化脂质之间不同的电离和碎片化行为,这是由它们对接口温度和碰撞诱导解离(CID)气压的响应所驱动的。特别是,与亲脂性的羟基十八碳二烯酸(HODEs)和羟基二十碳四烯酸(HETEs)相比,前列腺素和脂oxin在更高的CID气压和更低的温度下更有利于在多反应监测分析中实现最佳强度。虽然全局源参数得到了优化,但特定分析物的进样/出口电位和碰撞能量需要单独调整。最终方法应用于分析七类氧化脂质,包括白三烯、前列腺素、脂oxin、消退素、HETEs、HODE和羟基三烯酸(HoTrEs)。尽管定量下限的改善幅度不大(柱上<1 pg),但脂oxin和消退素的信噪比提高了两倍,白三烯和HETEs的信噪比提高了三到四倍,增强了痕量水平的检测。这种由DoE指导的策略为改进不同仪器供应商的氧化脂质UHPLC-MS/MS分析提供了一个强大的工具,为实验室间的可比性指明了方向。