Suppr超能文献

传统及基于机器学习的年龄、体重和身高在自杀性缢吊中与结位置相关的甲状舌骨和颈椎骨折中的意义分析

Conventional and machine learning-based analysis of age, body weight and body height significance in knot position-related thyrohyoid and cervical spine fractures in suicidal hangings.

作者信息

Leković Aleksa, Vukićević Arso, Nikolić Slobodan

机构信息

Institute of Forensic Medicine, University of Belgrade - Faculty of Medicine, 31a Deligradska St., Belgrade, 11000, Serbia.

Center of Bone Biology, Institute of Anatomy, University of Belgrade - Faculty of Medicine, Dr Subotica 4/2, Belgrade, 11000, Serbia.

出版信息

Int J Legal Med. 2025 May;139(3):1313-1333. doi: 10.1007/s00414-025-03412-6. Epub 2025 Feb 1.

Abstract

The thyrohyoid complex and cervical spine fracture distribution patterns may reflect the knot position as the force distribution by the noose to different neck regions may vary depending on it. Recently, machine learning models (MLm) were used to classify knot position through these fractures. The contribution of aging on the fracture susceptibility is better demonstrated, but data on body weight (BW) and height (BH) significance on this is more doubtful and MLm did not consider them. A retrospectively obtained autopsy data on sex, age, BW, BH and distribution of greater hyoid bone horn (GHH), superior thyroid cartilage horn (STH), and cervical spine fractures in 368 suicidal hangings were analyzed by standard statistics to determine association of the anthropometrics (age, BW, and BH) with the fracture occurrence, and by machine learning algorithms to determine if body weight and height improved MLm classification of hanging cases with typical and atypical knot positions. In the sample, unilateral GHH fracture was significantly more common in atypical hangings, while isolated STH fractures were more common in typical hangings. Age was a predictor of GHH fractures and BW of STH fractures, but BW poorly correlated with their number. BH was not a predictor of any thyrohyoid fracture. On the ROC curve analysis, the MLm that considered BW and BH did not perform statistically better than MLm that did not consider them. The study indicates that body weight and height are of no detrimental value in assessing the thyrohyoid and cervical spine fracture patterns in suicidal hangings.

摘要

甲状舌骨复合体和颈椎骨折的分布模式可能反映绳结位置,因为绳索对不同颈部区域的力分布可能因绳结位置而异。最近,机器学习模型(MLm)被用于通过这些骨折来分类绳结位置。衰老对骨折易感性的影响得到了更好的证明,但关于体重(BW)和身高(BH)对此影响的数据更值得怀疑,且MLm未考虑它们。对368例自杀性缢吊的性别、年龄、BW、BH以及大角舌骨(GHH)、甲状软骨上角(STH)和颈椎骨折分布的回顾性尸检数据进行标准统计分析,以确定人体测量学指标(年龄、BW和BH)与骨折发生之间的关联,并通过机器学习算法确定体重和身高是否能改善MLm对典型和非典型绳结位置缢吊病例的分类。在样本中,非典型缢吊中单侧GHH骨折明显更常见,而孤立的STH骨折在典型缢吊中更常见。年龄是GHH骨折的预测因素,BW是STH骨折的预测因素,但BW与骨折数量的相关性较差。BH不是任何甲状舌骨骨折的预测因素。在ROC曲线分析中,考虑BW和BH的MLm在统计学上并不比不考虑它们的MLm表现更好。该研究表明,体重和身高在评估自杀性缢吊中的甲状舌骨和颈椎骨折模式方面没有不利价值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验