Suppr超能文献

用于光催化介导的高效部分硝化作用的含O的g-CN与红球菌的链式组装:从亚硝酸盐资源演变到装置应用

Chain assembly of Rhodococcus bacteria with O-doped g-CN for photocatalysis mediated high-performance partial nitrification: From nitrite resource evolution to device application.

作者信息

Kang Shifei, Du Mingzhu, Liu Nian, Yang Tingyun, Yang Zitong, Wu Yikang, Sun Zhen, Lai Qifang

机构信息

Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China; Institute of Photochemistry and Photofunctional Materials (IPPM), University of Shanghai for Science and Technology, Shanghai 200093, PR China.

Department of Environmental Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, PR China.

出版信息

J Hazard Mater. 2025 May 5;488:137421. doi: 10.1016/j.jhazmat.2025.137421. Epub 2025 Jan 27.

Abstract

Nitrogen conversion via partial nitrification-anammox (PN/A), utilizing nitrite as a key intermediate, is an ideal low-carbon approach for wastewater nitrogen removal. However, the partial nitrification process, which is rate-limited and relies on less common bacteria with slow reaction kinetics, poses challenges for high-throughput PN/A implementation. Herein, we developed a microbial/photocatalysis coupling system using Rhodococcus bacterial and O-doped g-CN (OCN) photocatalysts. This approach leverages photogenerated electrons and free radicals from photocatalysts to directly activate microorganisms, enhancing the redox gradient. This intensification selectively inhibits the enzymatic conversion of nitrite to nitrate and its reduction to nitrogen in Rhodococcus bacteria. Consequently, it promotes a highly selective partial nitrification process, generating ample nitrite to facilitate anammox reactions. Transmission electron microscopy and electrochemical characterization showed bacteria forming chain-like assemblies on OCN particles, with the composite exhibiting a favorable redox profile, low impedance, and high stability. Ammonia conversion to nitrite reached 96 % in 3 days, with an enriched NO concentration of 36.3 mg/L, 10 times higher than the raw bacterial control. Hence, this strategy of constructing bacterial-photocatalysis system achieved high selectivity and efficiency in partial nitrification. Transcriptome and qPCR analyses showed upregulation of genes linked to the short-cut denitrification metabolic pathway. Photocatalyst band structure and redox potential analysis suggest a new bio-photoelectrochemical partial nitrification pathway. Finally, the feasibility and applicability in future industrial and ecological water treatment were validated through demo H-type reactors and aquarium experiments. These findings offer innovative perspectives for controlled modulation of ammonia nitrogen conversion focus on nitrite intermediate, advancing an energy-efficient, low-carbon nitrogen cycle.

摘要

通过亚硝酸盐作为关键中间体的部分硝化-厌氧氨氧化(PN/A)进行氮转化,是一种理想的低碳废水脱氮方法。然而,部分硝化过程受速率限制,依赖反应动力学缓慢的不常见细菌,这对高通量PN/A的实施构成挑战。在此,我们开发了一种使用红球菌和O掺杂g-CN(OCN)光催化剂的微生物/光催化耦合系统。这种方法利用光催化剂产生的光生电子和自由基直接激活微生物,增强氧化还原梯度。这种强化作用选择性地抑制了红球菌中亚硝酸盐向硝酸盐的酶促转化及其向氮气的还原。因此,它促进了高度选择性的部分硝化过程,产生充足的亚硝酸盐以促进厌氧氨氧化反应。透射电子显微镜和电化学表征表明,细菌在OCN颗粒上形成链状聚集体,该复合材料表现出良好的氧化还原特性、低阻抗和高稳定性。氨向亚硝酸盐的转化率在3天内达到96%,富集的NO浓度为36.3mg/L,比原始细菌对照高10倍。因此,这种构建细菌-光催化系统的策略在部分硝化中实现了高选择性和高效率。转录组和qPCR分析表明,与短程反硝化代谢途径相关的基因上调。光催化剂能带结构和氧化还原电位分析表明存在一种新的生物光电化学部分硝化途径。最后,通过示范H型反应器和水族箱实验验证了其在未来工业和生态水处理中的可行性和适用性。这些发现为以亚硝酸盐中间体为重点的氨氮转化的可控调节提供了创新视角,推动了节能、低碳的氮循环。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验