Tsikas Dimitrios
Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, 30623 Hannover, Germany.
J Chromatogr B Analyt Technol Biomed Life Sci. 2025 Mar 1;1253:124487. doi: 10.1016/j.jchromb.2025.124487. Epub 2025 Jan 28.
The main priniciples of gas chromatography-mass spectrometry (GC-MS) and gas chromatography-tandem mass spectrometry (GC-MS/MS) are: 1) separation of mostly derivatized analytes in the lumen of temperature-programmed gas chromatography (GC) fused-silica capillary columns, 2) ionization of gaseous charge-free analyte derivatives in the ion-source by means of electrons (electron ionization, EI) or in combination with a reagent gas such as methane (chemical ionization, CI), and 3) separation of simply ionized analytes or fragments in electric and/or magnetic fields due to their mass-to-charge ratio (m/z). EI generates (radical) cations, whereas CI is used to analyze either simply positively (positive-ion chemical ionization, PICI) or simply negatively charged analytes (negative-ion chemical ionization, NICI). In general, NICI in combination with the use of fluorinated (F) derivatization reagents is used in quantitative analyses as fluorinated analytes are softly ionized thus producing anions in high abundance and of high intensity. In quantitative analyses by GC-NICI-MS and GC-NICI-MS/MS, the position of the negative charge in the detected anions is secondary and in many cases unknown. The question of the position of the negative charge in analyte anions formed by NICI in GC-MS and GC-MS/MS is basically of theoretical interest and poorly addresed. The present article discusses this issue in detail. Previously reported GC-NICI-MS and GC-NICI-MS/MS quantitative methods for different classes of analytes, such as amino acids, fatty acids and drugs alongside their H-, C-, N- and O-isotopologs, after derivatization with fluorinated reagents including pentafluorobenzyl bromide (PFB-Br), pentafluorobenzoyl chloride (PFB-COCl) and pentafluoropropionic anhydride (PFPA) serve as examples and resources of data. ChemDraw Professional software was used to construct chemical structures of analytes and ions found in GC-NICI-MS and GC-NICI-MS/MS mass spectra. The results of the present study provide unique insights into the gas-phase reactions that take place in the ion-source of GC-MS and in the collision-chamber of GC-MS/MS instruments mainly based on the quadrupole (Q) technology. Paradoxically, the negative charge cannot be always assigned in precursor and product ions by standard rules of chemistry, unlike in EI and PICI. For example, PFB esters of fatty acids and eicosanoids (R-COO-PFB) ionize to form their carboxylates with the negative charge being definetly located in the carboxylic groups (R-COO, [M-PFB]). In contrast, methyl ester pentafluoropropionyl derivatives of amino acids ionize readily and abundantly under NICI conditions, yet the negative charge cannot be always asigned with apodictic certainty, even not for the calibrating/tuning compound perfluorotributylamine (PFTBA). The paradox vanishes when considering gas-phase reactions in the ion-source as reduction reactions of secondary electrons with analytes molecules. The present work should be helpful guide in intepreting GC-NICI-MS and GC-NICI-MS/MS mass spectra of derivatized analytes and their isotopologs, as well as in developing analyte-specific quantitative methods for endogenous and exogenous substances including drugs in biological samples.
气相色谱 - 质谱联用(GC - MS)和气相色谱 - 串联质谱联用(GC - MS/MS)的主要原理如下:1)在程序升温气相色谱(GC)熔融石英毛细管柱管腔内对大多经过衍生化的分析物进行分离;2)通过电子(电子电离,EI)或与诸如甲烷等反应气相结合(化学电离,CI),使离子源中气态的不带电荷的分析物衍生物发生电离;3)根据其质荷比(m/z),在电场和/或磁场中对单电离的分析物或碎片进行分离。EI产生(自由基)阳离子,而CI用于分析带单正电荷的分析物(正离子化学电离,PICI)或带单负电荷的分析物(负离子化学电离,NICI)。一般来说,NICI与使用氟化(F)衍生化试剂相结合用于定量分析,因为氟化分析物会被软电离,从而产生大量高强度的阴离子。在通过GC - NICI - MS和GC - NICI - MS/MS进行定量分析时,所检测到的阴离子中负电荷的位置是次要的,并且在许多情况下是未知的。在GC - MS和GC - MS/MS中,由NICI形成的分析物阴离子中负电荷的位置问题基本上仅具有理论意义,且很少有人探讨。本文将详细讨论这个问题。先前报道的针对不同类别的分析物,如氨基酸、脂肪酸和药物及其H -、C -、N -和O -同位素异构体的GC - NICI - MS和GC - NICI - MS/MS定量方法,在用包括五氟苄基溴(PFB - Br)、五氟苯甲酰氯(PFB - COCl)和五氟丙酸酐(PFPA)在内的氟化试剂进行衍生化之后,可作为数据示例和来源。使用ChemDraw Professional软件构建在GC - NICI - MS和GC - NICI - MS/MS质谱图中发现并记录的分析物和离子的化学结构。本研究结果主要基于四极杆(Q)技术,为在GC - MS的离子源以及GC - MS/MS仪器的碰撞室中发生的气相反应提供了独特的见解。矛盾的是,与EI和PICI不同,通过化学标准规则不能总是在前体离子和产物离子中确定负电荷的位置。例如,脂肪酸和类二十烷酸的PFB酯(R - COO - PFB)电离形成其羧酸盐阴离子,负电荷明确位于羧基(R - COO,[M - PFB])中。相反,氨基酸的甲酯五氟丙酰基衍生物在NICI条件下很容易且大量地发生电离,然而即使对于校准/调谐化合物全氟三丁胺(PFTBA),也不能总是确定无疑地确定负电荷的位置。当将离子源中的气相反应视为二次电子与分析物分子的还原反应时,这个矛盾就消失了。本研究对于解释衍生化分析物及其同位素异构体的GC - NICI - MS和GC - NICI - MS/MS质谱图,以及为生物样品中的内源性和外源性物质(包括药物)开发特定分析物的定量方法应具有指导作用。